Том 25, № 4 (2023)

Обложка

Весь выпуск

ТЕХНОЛОГИЯ

Моделирование взаимосвязи силы резания с глубиной резания и объемами снимаемого металла единичными зернами при плоском шлифовании

Акинцева А.В., Переверзев П.П.

Аннотация

Введение. Модель расчета силы резания лежит в основе модулей САМ-системы, связанных как с прогнозированием погрешности обработки на металлорежущих станках для заданных условий шлифования, так и с оптимизацией всех параметров технологического режима (параметры режимов резания, режущего инструмента и пр.). Однако из-за отсутствия адекватной модели расчета силы резания, представленной в инженерном виде, такие модули до сих пор не разработаны не только для операций плоского шлифования, но и для всех других видов металлообработки. Сложность получения адекватной модели силы резания для операций плоского шлифования заключается в необходимости установления взаимосвязи станочных параметров макрорежимов резания (подачи, скорость резания) шлифовальным кругом с параметрами микрорежимов резания – множеством режущих зерен круга, связанных с пластической деформацией металла в зоне сдвига, микрообъемами снимаемого металла и геометрией режущей части абразивных зерен. Целью данной работы является разработка силовой модели, устанавливающей взаимосвязь силы резания с глубиной резания и объемами снимаемого металла единичными зернами и кругом в целом на основе интеграции микрообъемов и микросил при срезе металла зернами круга. Предметом исследования является математическое моделирование взаимосвязи между силой резания и режимами резания с параметрами микрорезания группой единичных зерен на основе равенства работ при снятии металла одного объема. Методологической основой исследований служит установленная С.Н. Корчаком связь между работой (энергией), затрачиваемой на пластическую деформацию металла единичным зерном, интенсивностью напряжений, интенсивностью скоростей деформаций и объемом снимаемого металла кругом в целом. Результатом работы является аналитическая модель, достоверно и адекватно устанавливающая взаимосвязь между силой резания и глубиной резания, режимами резания, характеристикой круга, физико-механическими свойствами обрабатываемого материала и другими основными технологическими параметрами. Областью применения результатов является возможность использования представленной в данной статье модели расчета силы резания в качестве основы при разработке модуля для CAM-системы (цифрового двойника процесса механической обработки), который бы позволял в рамках производственного процесса вести расчет и проектирование оптимальных технологических параметров операции плоского шлифования, а также осуществлять тестирование режимов резания по критерию точности обработки партии деталей с учетом влияния различных переменных факторов и реальных условий обработки.
Обработка металлов (технология • оборудование • инструменты). 2023;25(4):6-21
pages 6-21 views

Систематический обзор технологий производства металлической пены

Шарма Ш.С., Йоши А., Раджпут Й.С.

Аннотация

Введение. В статье представлен всесторонний обзор методов производства, материалов, свойств и проблем, связанных с пенометаллами; особое внимание уделяется пенометаллам на основе алюминия и титана. Пористые пенометаллы вызывают интерес благодаря уникальному сочетанию низкой плотности, высокой жесткости и высокой способности поглощать энергию. Металлическая пена известна своим уникальным сочетанием физических и механических свойств, включая повышенную жесткость, удельную прочность при высоких температурах, легкий вес и эффективное поглощение энергии при относительно низкой площадке текучести. Пенометалл широко используется в автомобильной, судостроительной и космической промышленности. Он имеет высокую пористость, низкую относительную плотность и высокую прочность, что повышает эксплуатационные характеристики изделия. В аэрокосмической и автомобильной промышленности требуется материал с высоким соотношением прочности и удельного веса. Методы. Для удовлетворения этой потребности было разработано множество методов производства металлической пены, таких как метод расплавления, метод осаждения и метод порошковой металлургии. Метод литья широко используется для производства металлической пены по сравнению с другими методами. Результаты и обсуждение. При производстве пенометаллов на основе алюминиевого сплава обычно используется метод прямого вспенивания расплавов. Гидрид титана (TiH2) был популярным пенообразующим веществом, но высокая скорость его разложения и ограничения по стоимости привели к разработке альтернативных пенообразователей, таких как CaCO3 (карбонат кальция). Титановую пену часто изготавливают, используя наполнитель для формирования пор. Этот метод включает смешивание титанового порошка с наполнителем, формирование заготовки, а затем спекание для удаления наполнителя и создания пористой структуры, поскольку метод, основанный на использовании наполнителя для формирования пор, позволяет точно контролировать свойства пены, такие как размер пор, пористость и относительную плотность. Результаты также показывают, что пористость пенометаллов может варьироваться от 50 до 95 %, что совпадает с данными из литературы. Пористые структуры могут включать в себя открытые и закрытые поры, а также их комбинацию, из-за чего различные участки материала обладают разными механическими и термическими свойствами. В различных литературных источниках также отмечается, что относительная плотность, которая представляет собой отношение плотности пенометалла к плотности порошкового материала, варьируется от 0,02 до 0,44 в зависимости от используемого метода производства.
Обработка металлов (технология • оборудование • инструменты). 2023;25(4):22-35
pages 22-35 views

Обзор современных требований к сварке трубных высокопрочных низколегированных сталей

Карлина Ю.И., Кононенко Р.В., Иванцивский В.В., Попов М.А., Дерюгин Ф.Ф., Бянкин В.Е.

Аннотация

В течение многих лет для сварки крупных труб нефте- и газопроводов применялись проверенные процессы дуговой сварки, охват которых простирается от ручной дуговой сварки штучными электродами до применения аппаратов орбитальной сварки с использованием металла. Введение отражает, что создание новых составов сталей для нефте- и газопроводов является актуальной задачей в целях обеспечения их высокой надежности. Методы исследования. В трубном производстве обычно используются низкоуглеродистые стали с феррито-перлитной структурой, но они не в состоянии удовлетворить возросшие потребности рынка. Появляются новые марки стали с бейнитной структурой. Результаты. Разрушение сварных соединений трубопроводов из высококачественной стали становится серьезной проблемой для трубопроводной промышленности. Обсуждение. В данной работе проведен анализ характеристик микроструктуры сварного шва и ее связи с ударной вязкостью. Прогнозирование ударной вязкости на основе микроструктурных характеристик металлов сварных швов стали усложняется из-за большого количества задействованных параметров. Обычная практика, связывающая это свойство с микроструктурой последнего валика многопроходной сварки, оказалась неудовлетворительной, поскольку количество игольчатого феррита, наиболее желательного компонента, не всегда может быть основным фактором, влияющим на ударную вязкость. В настоящем обзоре сообщается о наиболее репрезентативном исследовании, касающемся микроструктурного фактора в сварном шве трубных сталей. Обзор включает в себя сводку наиболее важных переменных процесса, свойств материалов, нормативных правил, а также характеристик микроструктуры и механических свойств соединений. Заключение. Предполагается, что этот обзор поможет читателям с разным опытом, от не специалистов по сварке или материаловедов до специалистов различных промышленных приложений и исследователей.
Обработка металлов (технология • оборудование • инструменты). 2023;25(4):36-60
pages 36-60 views

Влияние режимов дуговой автоматической сварки на геометрические параметры шва стыковых соединений из низкоуглеродистой стали, выполненных с применением экспериментального флюса

Старцев Е.А., Бахматов П.В.

Аннотация

Введение. Металлургической промышленностью на территории РФ накоплен значительный объем шлаков, получаемых при выплавке сталей и чугунов. Наличие шлакоотвалов пагубно влияет на экологию регионов, имеющих металлургические предприятия. При восстановлении железа из шлаков побочным продуктом становится агломерат оксидов, который можно рассматривать как флюсовую композицию для дуговой сварки/наплавки под слоем флюса, наполнителей порошковых проволок и покрытий сварочных штучных электродов. Цель работы: установить возможность дуговой сварки при использовании полученного авторами флюса и определить оптимальные режимы сварки с условием достижения геометрических параметров шва по ГОСТ 8713–79 и качества сварного соединения (отсутствие внутренних дефектов). В работе исследованы стыковые сварные соединения листовой стали ВСт3сп толщиной 5 мм, полученные автоматической сваркой под слоем флюса на постоянном токе с принудительным формированием корневого валика на керамических подкладках с применением флюса из переработанного металлургического шлака электросталеплавильного предприятия. Автоматическую сварку плоских образцов осуществляли на автомате тракторного типа АДФ-1250 с проволокой диаметром 3 мм при постоянной скорости сварки 54 см/мин с варьированием силы тока и напряжения на дуге в пределах 400–600 А и 27–37 В. Методы исследования. Оценка качества сварных соединений визуально-измерительным и рентгенографическим контролем, определение деформации образцов путем их лазерного сканирования и компьютерной обработки 3D-моделей. Статистическое моделирование в виде двухфакторного эксперимента с получением адекватных уравнений регрессии влияния режимов сварки на геометрические параметры шва: высоту усиления и ширину шва с лицевой и обратной стороны соединения. Результаты и обсуждение. Показана возможность получения сварочных флюсов из металлургических шлаков электросталеплавильного предприятия и их применения для создания сварных соединений. Установлены оптимальные режимы дуговой сварки тонкостенных листовых деталей из низкоуглеродистой стали с принудительным формированием корневого валика на керамических подкладках, обеспечивающие отсутствие внутренних дефектов в виде пор, трещин и непроваров, минимум остаточных деформаций и соответствие размеров сварного шва требованиям существующего стандарта. Номинальные значения геометрических параметров шва по ГОСТ 8713–79-С4 соответствуют следующим режимам сварки: скорость сварки 54 см/мин, сила сварочного тока 550 А, напряжение на дуге 30 В. Результаты работы могут быть применены на металлургических электросталеплавильных предприятиях, производящих низкоуглеродистую сталь при отработке технологий применения сварочных материалов из шлаков.
Обработка металлов (технология • оборудование • инструменты). 2023;25(4):61-73
pages 61-73 views

Фрезерование заготовок из мартенситной стали 40Х13, полученных с помощью аддитивных технологий

Мартюшев Н.В., Козлов В.В., Ци М., Багинский А.Г., Хань Ц., Бовкун А.С.

Аннотация

Введение. В последние годы большее внимание уделяется аддитивным технологиям печати проволокой. Из-за особенностей печати проволокой твердость заготовки получается существенно выше, чем при традиционной ковке. Увеличение твердости приводит к увеличению силы резания. Целью работы является исследование силы резания при фрезеровании образцов из нержавеющей стали 40Х13, полученных методом электронно-лучевой наплавки. Методы исследования. Образцы получались наплавкой проволоки из мартенситной нержавеющей стали 40Х13. В работе исследована микроструктура образцов. Для проведения исследовательской работы была выбрана стандартная методика проведения экспериментов по определению сил резания. Однако для определения сил Pz и Py использовалась четырёхзубая (z = 4) фреза и ширина фрезерования была менее 2 мм. В работе исследованы образцы, полученные с помощью электронно-лучевой наплавки проволокой из стали 40Х13. Определены силы резания, возникающие при фрезеровании данных образцов. Результаты и обсуждение. Структура полученных электронно-лучевой наплавкой образцов – это мартенсит отпуска. Установлено, что высокоскоростное фрезерование, высокоэффективное фрезерование и встречное фрезерование подходят для обработки таких заготовок. Для обработки тонкостенных заготовок из мартенситной нержавеющей стали после их изготовления методом электронно-лучевой наплавки необходимо использовать попутное фрезерование. Полученные в исследовании режимы резания позволяют снизить температуру режущей кромки, силу резания и изгиб маложёсткой концевой фрезы. Так, в ходе исследования удалось подобрать режимы, позволяющие уменьшить вибрацию системы «станок – приспособление – инструмент – деталь».
Обработка металлов (технология • оборудование • инструменты). 2023;25(4):74-89
pages 74-89 views

Оценка схемы многоканального углового прессования прутков и возможности ее применения на практике

Логинов Ю.Н., Замараева Ю.В.

Аннотация

Введение. Обработка малопластичных материалов требует создания высокого уровня сжимающих напряжений в процессе деформации. Это требование реализуется, например, в процессе равноканального углового прессования (РКУП). Однако продукция, получаемая методом РКУП, имеет сечение, идентичное исходной заготовке, что является одним из недостатков этого способа. Метод неравноканального углового прессования (НРКУП) в отличие от РКУП дает возможность изменить форму исходной заготовки в сторону приближения к форме готового продукта. Однако известное устройство НРКУП позволяет получить продукцию только в виде тонкой полосы прямоугольного поперечного сечения. Известные устройства для многоканального прессования не углового типа также имеют недостаток – их реализуют только на прессах горизонтального типа, где есть возможность приема длинномерных изделий на площадях цеха. Цель работы: оценка схемы многоканального углового прессования прутков, сочетающей в себе изменение формы исходной заготовки в поперечном сечении, а также накопление в процессе деформации высокого уровня деформации. Методы исследования: конечно-элементное моделирование с помощью программного модуля DEFORM. Результаты и обсуждение. В работе рассмотрена схема процесса углового прессования с применением устройства, позволяющего получать, например, магниевые прутки диаметром d = 4,1 мм при количестве каналов матрицы n = 3 из заготовки круглого поперечного сечения. Контейнер данного устройства в своей нижней части имеет прямоугольный паз, куда вставлена матрица. Моделирование исследуемого процесса с применением матрицы при расположении осей ее каналов в плоскости, ортогональной оси контейнера, и в первом варианте – вдоль оси прямоугольного паза, а во втором – вдоль радиуса контейнера позволило осуществить оценку распределения среднего напряжения. Установлено, что на металл заготовки в обоих вариантах процесса деформации воздействуют напряжения сжатия на высоком уровне (–1600 МПа). Оценка степени деформации отпрессованных прутков позволила выяснить, что в обоих вариантах процесса на начальной стадии максимум степени деформации может достигать значения 2,6, а на установившейся стадии – 5,0. Установлено, что в случае применения первого варианта матрицы уровень деформации по длине прутков ниже, чем при применении второго варианта матрицы. Разница достигает 20 %. Посредством оценки распределения степени деформации в поперечном сечении отпрессованных прутков вблизи очага деформации установлено, что в случае применения первого варианта матрицы отпрессованные прутки первого и третьего канала имеют неравномерность, причем большее значение степени деформации находится на периферийной части прутков со стороны, граничащей с центральным прутком. Это различие степени деформации достигает 20 %. При размещении второго варианта матрицы эта неравномерность уменьшается до 12 %. Таким образом, в случае применения матрицы с расположением осей каналов вдоль радиуса контейнера степень деформации распределяется более равномерно по сравнению со степенью деформации при применении матрицы с расположением осей каналов вдоль оси прямоугольного паза.
Обработка металлов (технология • оборудование • инструменты). 2023;25(4):90-104
pages 90-104 views

ОБОРУДОВАНИЕ. ИНСТРУМЕНТЫ

Влияние геометрии наконечника сварочного инструмента на характеристики растяжения соединений сплава АА8011, полученных сваркой трением с перемешиванием

Раджпут Й.С., Шарма А.К., Мишра В.Н., Саксена К., Дипак Д., Шарма Ш.С.

Аннотация

Введение. Алюминиевые сплавы широко востребованы в судостроении и авиастроении. В настоящем исследовании особое внимание уделено влиянию двух видов наконечников сварочного инструмента с различной геометрией на характеристики растяжения сварных соединений сплава АА8011. Технология соединения – сварка трением с перемешиванием (СТП) – выбрана из-за уникальных свойств, таких как очень малая ширина зоны термического влияния при соединении в твердом состоянии. На микроструктуру и механические свойства сварного соединения влияет геометрия инструмента и такие параметры, как скорость вращения и перемещения инструмента. Методы исследования. Эксперименты по СТП проводили на универсальном фрезерном станке сварочным инструментом с двумя видами наконечников – в форме усеченного конуса и цилиндра с резьбой – в трех различных режимах (1 – 320 об/мин, 45 мм/мин; 2 – 400 об/мин, 50 мм/мин; 3 – 575 об/мин, 60 мм/мин). Для анализа характеристик соединения были проведены испытания на растяжение и рассчитана максимальная прочность на разрыв, а также для каждого отдельного случая было рассчитано отношение прочности сварного соединения к прочности основного металла. Результаты и обсуждение. Полученные результаты свидетельствуют о том, что более высокие значения частоты вращения оказывают положительное влияние на прочность сварного соединения в случае использования сварочного инструмента с наконечником как в форме усеченного конуса, так и в форме цилиндра с резьбой. Независимо от частоты вращения и скорости подачи прочность сварного соединения на разрыв и отношение прочности сварного соединения к прочности основного металла стабильно выше в случае использования сварочного инструмента с наконечником в форме усеченного конуса по сравнению с наконечником в форме цилиндра с резьбой. Независимо от геометрии наконечника прочность сварного соединения на разрыв и отношение прочности сварного соединения к прочности основного металла максимальны при более высокой частоте вращения инструмента и составляют 123 МПа и 73,6 % для наконечника в форме усеченного конуса и 142 МПа и 85 % для наконечника в форме цилиндра с резьбой при 575 об/мин и 60 мм/мин. Это самые высокие значения по сравнению с 119 МПа и 72,5 % при 320 об/мин, 45 мм/мин; 115 МПа и 70,1 % при 400 об/мин, 50 мм/мин для инструмента с наконечником в форме усеченного конуса;138 МПа и 82,6 % при 320 об/мин, 45 мм/мин и 77,8 % и 130 МПа при 400 об/мин, 50 мм/мин для наконечника в форме цилиндра с резьбой. В целом исследование показывает, что соединения, полученные при помощи инструмента с наконечником в форме цилиндра с резьбой, имеют более высокую прочность на разрыв и отношение прочности сварного соединения к прочности основного металла, чем соединения, полученные при помощи инструмента с наконечником в форме усеченного конуса. Наибольшие прочность на разрыв и отношение прочности сварного соединения к прочности основного металла – 142 МПа и 84,5 % соответственно – были достигнуты при использовании инструмента с наконечником в форме цилиндра с резьбой при 575 об/мин и 60 мм/мин.
Обработка металлов (технология • оборудование • инструменты). 2023;25(4):105-116
pages 105-116 views

Моделирование рабочих характеристик и мультикритериальная оптимизация при токарной обработке нержавеющей стали AISI 304 (12Х18Н10Т) резцами с износостойким покрытием и с износостойким покрытием, подвергнутым микропескоструйной обработке

Чинчаникар С., Гейдж М.Г.

Аннотация

Введение. Высокоскоростная механическая обработка нержавеющей стали уже давно находится в центре внимания исследований. Из-за таких характеристик, как низкая теплопроводность и склонность к деформационному упрочнению, сталь AISI 304 трудно обрабатывать механически. Индикаторы обрабатываемости дают важную информацию об эффективности и результативности процесса обработки, позволяя производителям оптимизировать параметры обработки для повышения производительности и точности. Цель работы. Для обработки нержавеющей стали AISI 304 чаще всего используют твердосплавные инструменты с покрытием. Между тем в немногих исследованиях изучалось влияние предварительной и постобработки твердосплавных инструментов с покрытием при высокоскоростном точении этих сплавов. Кроме того, лишь небольшое количество исследований одновременно оптимизировали параметры резания при использовании инструментов с предварительной и последующей обработкой. Методы исследования. В настоящей работе проводится сравнительная оценка эффективности резцов с износостойким покрытием, а также с износостойким покрытием на пескоструйной основе при точении нержавеющей стали AISI 304. Использовали резцы с двумя типами покрытий: 1) с покрытием AlTiN, нанесенным осаждением паров PVD-AlTiN; 2) с покрытием AlTiN, нанесенным осаждением паров (PVD-AlTiN) с микропескоструйной обработкой в качестве последующей обработки (покрытием на пескоструйной основе); 3) с покрытием TiCN/Al2O3, нанесенным умеренно-температурным химическим осаждением из газовой фазы (MTCVD-TiCN/Al2O3). Для прогнозирования и оптимизации характеристик токарной обработки были разработаны математические модели, основанные на экспериментальных данных. Результаты и обсуждение. В этом исследовании было обнаружено, что инструменты с покрытием PVD-AlTiN имеют самую низкую силу резания и обеспечивают низкую шероховатость поверхности; за ними следуют инструменты с покрытием PVD-AlTiN, подвергнутые микропескоструйной обработке, и инструменты с покрытием MTCVD-TiCN/Al2O3. Однако существенных различий при обработке инструментами с износостойкими покрытиями и покрытиями, подвергшимися микропескоструйной обработке, не наблюдалось. Было обнаружено, что сила резания увеличивается с увеличением подачи и глубины резания, но уменьшается со скоростью резания. Однако этот эффект был существенным для инструментов с покрытием MTCVD. С другой стороны, более высокий срок службы характерен для инструментов с покрытием MTCVD-TiCN/Al2O3; на втором месте – инструменты с покрытием PVD-AlTiN и инструменты с покрытием PVD-AlTiN, подвергнутые микропескоструйной обработке. Срок службы инструмента во многом зависит от скорости резания. Однако для инструментов с покрытием PVD-AlTiN этот эффект проявляется более заметно. Модели с коэффициентами корреляции выше 0,9 можно использовать для прогнозирования реакции при точении нержавеющей стали AISI 304. Оптимизационный анализ позволил выявить, что при точении нержавеющей стали AISI 304 инструментами с покрытием MTCVD-TiCN/Al2O3 и силой резания 18–27 Н минимальная шероховатость поверхности составляет 0,3–0,44 мкм, а срок службы инструмента выше 36–51 мин по сравнению с инструментами с покрытием PVD-AlTiN (С) и инструментами с покрытием PVD-AlTiN, подвергнутыми микропескоструйной обработке (CMB).
Обработка металлов (технология • оборудование • инструменты). 2023;25(4):117-135
pages 117-135 views

Точение стали AISI 52100 с наложением ультразвуковых колебаний: сравнительная оценка и моделирование с использованием анализа размерностей

Гуле Г., Санап С., Чинчаникар С.

Аннотация

Введение. Прецизионная обработка твердых и хрупких материалов является достаточно сложной, в связи с чем были разработаны новые и надежные технологии, например, точение с наложением ультразвуковых колебаний (UVAT), обеспечивающее повышенные скорость съема материала, качество поверхности и срок службы инструмента. Цель работы. Точение твердых материалов с использованием экономичного твердосплавного инструмента с покрытием вместо дорогостоящих керамических и КБН-пластин до сих пор не получило широкого распространения из-за износа инструмента и ограничений обработки. Для достижения лучшей обрабатываемости твердых материалов группа исследователей предприняла попытку токарной обработки, используя твердосплавный инструмент с различными покрытиями, различные методы охлаждения и др. Тем не менее исследователями было предпринято мало попыток по ультразвуковому точению твердых материалов (UVAHT). Более того, в открытой литературе редко сообщается о сравнительной оценке UVAHT с использованием анализа размерностей. Методы исследования. В данном исследовании проводится сравнительная оценка износа инструмента и потребляемой электрической мощности во время традиционного точения (CT) и ультразвукового точения твердых материалов (UVAHT) из стали AISI 52100 (62 HRC) с использованием твердосплавного инструмента TiAlSiN с PVD-покрытием. Эксперименты проводились с различной скоростью резания, подачей и глубиной резания, при этом частота и амплитуда колебаний оставались постоянными на уровне 20 кГц и 20 мкм соответственно. Далее была разработана теоретическая модель для прогнозирования износа инструмента и потребляемой электрической мощности с использованием концепции анализа размерностей, т. е. π-теоремы Бекингема, учитывающей влияние скорости резания, частоты и амплитуды колебаний при постоянной подаче и глубине резания 0,085 мм/об и 0,4 мм соответственно. Безразмерные группы созданы для выявления сложных связей и оптимизации условий обработки. Износ инструмента и потребляемая электрическая мощность измерялись экспериментально и статистически анализировались с использованием π-теоремы Бекингема. Результаты и обсуждение. Благодаря использованию анализа размерностей удалось получить представление о процессе UVAHT. Результаты показывают, что параметры ультразвуковых колебаний оказывают существенное влияние на износ инструмента и потребляемую электрическую мощность. Безразмерные группы представляют собой методическую основу для уточнения режимов обработки. Износ инструмента и потребляемая электрическая мощность возрастали с увеличением скорости резания, глубины резания и подачи. Однако этот эффект был более значимым при традиционном точении, чем при ультразвуковом точении твердых материалов. Потребление энергии возрастало с увеличением скорости резания, частоты и амплитуды колебаний. Однако увеличение потребляемой электрической мощности было более заметным при изменении скорости резания, чем при изменении частоты и амплитуды колебаний. Износ по задней поверхности возрастает с увеличением скорости резания и амплитуды колебаний и уменьшается с увеличением частоты колебаний. Это исследование способствует лучшему пониманию основной динамики UVAHT, что поможет улучшить технологические процессы прецизионной обработки твердых материалов. В статье исследуется практическое значение этих открытий для прецизионной обработки твердых материалов.
Обработка металлов (технология • оборудование • инструменты). 2023;25(4):136-150
pages 136-150 views

Влияние формы тороидальной задней поверхности на углы режущего клина и механические напряжения вдоль режущей кромки сверла

Пивкин П.М., Ершов А.А., Миронов Н.Е., Надыкто А.Б.

Аннотация

Введение. Сверление отверстий с квалитетом точности от IT8 до IT12 широко применяется в промышленном производстве. Однако в настоящее время не существует исследований и научно-обоснованных рекомендаций по назначению геометрии режущей части сверл с тороидальной задней поверхностью. В связи с этим разработка САПР новых конструкций сверл с тороидальной задней поверхностью и  численное моделирование напряженного состояния их режущей части является актуальными задачами. Цель работы: уменьшение диапазона изменения переднего угла и угла заострения режущего клина вдоль режущей кромки от периферии к центру, а также снижение эквивалентных напряжений в режущем клине. В работе исследованы изменения величины переднего угла и угла заострения режущего клина в зависимости от радиуса образующей тороидальной задней поверхности; изменения эквивалентных напряжений в режущем клине в зависимости от изменения радиуса образующей тороидальной задней поверхности. Методами исследования являются основы теории о режущем инструменте, методы его автоматизированного проектирования и метод конечных элементов, примененный в данной работе к новым конструкциям сверл. Результаты и обсуждение. Установлено, что с уменьшением радиуса образующей задней поверхности уменьшается диапазон изменения переднего угла и угла заострения режущего клина сверла по сравнению со стандартной конструкцией. Разработана система автоматизированного проектирования сверл с тороидальной задней поверхностью. В результате величина диапазона изменения переднего угла вдоль режущей кромки уменьшилась на 86 % у сверла с минимальным радиусом образующей тороидальной поверхности по сравнению с конической заточкой, диапазон угла заострения режущего клина уменьшился на 56 %, максимальные эквивалентные напряжения снизились в 2,13 раза. При этом угол заострения режущего клина имеет значение, близкое к постоянному, на половине зуба сверла. Данные показатели превышают все показатели существующих на сегодняшний день аналогичных конструкций спиральных сверл.
Обработка металлов (технология • оборудование • инструменты). 2023;25(4):151-166
pages 151-166 views

МАТЕРИАЛОВЕДЕНИЕ

Влияние внутренних напряжений на интенсивность коррозионных процессов конструкционной стали

Соколов Р.А., Муратов К.Р., Венедиктов А.Н., Мамадалиев Р.А.

Аннотация

Введение. Поведение металла в коррозионной среде может быть неоднозначным, что связано с особенностями протекания коррозионного процесса. Влияние на процесс коррозии оказывают как внешние, так и внутренние факторы. Внешние факторы определяются температурой, влажностью, типом коррозионной среды и др. Внутренние факторы зависят от параметров системы (материала): наличия включений, фазового состава, структуры, величины внутренних остаточных напряжений. Внутренние факторы неоднозначно влияют на поведение материала в определенной агрессивной среде, что в конечном итоге сказывается на времени коррозионного разрушения материала и, как следствие, на времени эксплуатации объектов, изготовленных из данного материала. Потому дифференциация влияния различных внутренних факторов на скорость протекания коррозионного процесса в агрессивной среде является приоритетным направлением исследований. Цель настоящей работы: рассмотрение влияния величины внутренних остаточных напряжений на скорость коррозионного процесса в агрессивной среде – 5%-м растворе серной кислоты. Объектом исследования в работе является листовой прокат стали Ст3 в состоянии поставки после различной по величине пластической деформации, из которого были изготовлены исследуемые образцы. Методы исследования. Изучение микроструктуры деформированных образцов осуществлялось на оптическом микроскопе Оlympus GX53; программное обеспечение SIAMS 800 использовалось для определения балла зеренной структуры и определения анизотропии структуры после деформации материала; рентгеновский дифрактометр ДРОН-7 – для регистрации дифрактограмм и определения величины внутренних напряжений; лабораторные весы SHIMADZU UW620h – для измерения массы исследуемых образцов. Растяжение образцов производилось на универсальной испытательной машине И1185М (100 кН). Результаты и обсуждение. Полученные результаты показывают, что пластическая деформация материала в направлении проката оказывает неоднозначное воздействие на анизотропию структуры. При повышении степени пластической деформации происходит неоднозначное изменение величины анизотропии зерна, что связано с внутренними эффектами протекающих в структуре материала процессов при пластической деформации, такими как скольжение кристаллической решетки в направлениях {111} <110> и возникновение обратных остаточных внутренних напряжений из-за наличия в структуре стали включений. Однако при этом степень пластической деформации достаточно хорошо коррелирует с величиной внутренних остаточных напряжений. Рост величины внутренних остаточных напряжений приводит к возрастанию скорости коррозии конструкционной стали Ст3 в 5%-м растворе соляной кислоты. Полученная зависимость описывается линейным уравнением с высоким коэффициентом детерминации, что свидетельствует о наличии сильной связи между величиной внутренних остаточных напряжений и скоростью коррозии материала. При этом коэффициент влияния величины внутренних напряжений на скорость коррозии равен 0,72, что дополнительно доказывает наличие взаимосвязи между рассматриваемыми параметрами.
Обработка металлов (технология • оборудование • инструменты). 2023;25(4):167-179
pages 167-179 views

Модуль упругости и твердость титанового сплава, сформировавшегося в условиях электронного лучевого сплавления при 3D-печати проволокой

Клименов В.А., Колубаев Е.А., Хань Ц., Чумаевский А.В., Двилис Э.С., Стрелкова И.Л., Дробяз Е.А., Яременко О.Б., Куранов А.Е.

Аннотация

Введение. Развитие и промышленное освоение аддитивных технологий зависит от многих факторов, среди которых немаловажную роль играет производительность процесса печати и коэффициент использования материала. Поэтому интерес к применению проволочных технологий в условиях печати все более привлекает внимание. Использование электронно-лучевых установок для этих целей является наиболее эффективным и конкурентноспособным в случае изготовления деталей из сплавов, обладающих повышенной окисляемостью (титан, нержавеющие стали и др.), так как процесс послойного сплавления происходит в вакууме. Применение для этих целей сварочной титановой проволоки типа ВТ6св представляется наиболее предпочтительным вследствие доступности и широкой номенклатуры по толщине. Однако одной из особенностей такого титанового сплава является его отличие по легирующим элементам (в меньшую сторону) в сравнении со сплавами типа ВТ6 и Ti-6Al-4V. Высокая производительность процесса печати проволокой и состав сплава ВТ6св влияют на особенность структурно-фазового состояния и свойств формирующегося сплава. Известно, что модуль упругости и твердость сплавов являются очень важными характеристиками, которые могут измеряться быстро, в том числе и с помощью методов неразрушающего контроля. Целью работы является исследование возможности применения различных методов измерения модуля упругости и контроля твердости для исследования образцов, напечатанных титановой проволокой ВТ6св на электронно-лучевой установке Института физики прочности и материаловедения СО РАН. Методы исследования образцов из титановых сплавов ВТ6св, полученных трехмерной печатью, и титановых сплавов типа ВТ1-0, ВТ6 и Ti-6Al-4V в разных структурных состояниях: металлографический анализ, исследование модуля упругости методом ультразвукового контроля, индентированием на макро- и микроуровнях, измерение твердости индентированием. Результаты и обсуждение. Установлено, что формирующийся при электронно-лучевой печати титановый сплав из проволоки ВТ6св имеет типичную столбчатую структуру, простирающуюся на всю высоту образца и сформировавшуюся при различных термических условиях в различных зонах при получении образца. Особенности формирования структуры обеспечивают особенности измеряемых значений модуля упругости и твердости в различных участках образца. Анализ полученных значений модуля упругости для напечатанного образца показал, что они несколько выше, чем значения модуля, полученные для сплавов в состоянии поставки типа Ti-6Al-4V, в то время как значения твердости, наоборот, оказались более низкими. Анализ данных по измерению модуля упругости методами индентирования показал, что получаемые значения при микроиндентировании более низкие, чем при макроиндентировании, которые близки к значениям, полученным с помощью ультразвука, а также к известным из других источников. Разница значений модулей упругости в различных пространственных участках напечатанного образца свидетельствует о структурно-фазовой чувствительности модуля упругости и демонстрирует возможности используемых в работе методов их измерения.
Обработка металлов (технология • оборудование • инструменты). 2023;25(4):180-201
pages 180-201 views

In situ анализ кристаллической решетки нитридных однокомпонентных и многослойных покрытий ZrN/CrN в процессе термоциклирования

Воронцов А.В., Филиппов А.В., Шамарин Н.Н., Москвичев Е.Н., Новицкая О.С., Княжев Е.О., Денисова Ю.А., Леонов А.А., Денисов В.В.

Аннотация

Введение. Тепловое расширение – важная теплофизическая характеристика материалов, показывающая их расширение при нагревании. Знание этого свойства важно как с научной точки зрения, так и для практического использования. Материалы с низким тепловым расширением широко применяются в электронике, термобарьерных покрытиях и других областях. Несоответствие в тепловом расширении между различными материалами может привести к термическому напряжению на контактных поверхностях. Метод in situ синхротронной рентгеновской дифракции позволяет обнаружить это несоответствие. Термическое напряжение требует анализа коэффициента теплового расширения. Поведение при объемном расширении наблюдается в покрытиях, нанесенных термическим напылением. КТР важен для проектирования и прогнозирования характеристик покрытия при термических нагрузках. Изменение КТР может вызывать трещины и деградацию покрытия. In situ рентгеноструктурный анализ помогает понять тепловое расширение, размер кристаллитов и изменение напряжения и деформации при изменении температуры. Целью работы является интерпретация и использование in situ высокотемпературной рентгенографии в качестве эффективного инструмента для изучения поведения теплового несоответствия подложки из сплава ВК8 (8 вес.% Co, WC-матрица) с покрытиями CrN, ZrN и многослойным покрытием CrZrN, а также характерные различия между однокомпонентными покрытиями и их комбинации в многослойном покрытии. Методика исследования. В работе исследованы образцы нитридных покрытий хрома и циркония, нанесенных на подложки из твердого сплава ВК8. Основополагающим методом в работе является in situ анализ с использованием синхротронного излучения. Были оценены параметр решетки в зависимости от температуры циклирования, коэффициент теплового расширения при нагреве и охлаждении, а также исследовано несоответствие теплового расширения пары «подложка – покрытие» и слоев покрытия в многослойном покрытии. Результаты и обсуждение. Исследованы параметры кристаллической решетки и тепловое расширение покрытий. Параметр решетки всех покрытий уменьшался в процессе термоциклирования, что свидетельствует об испарении азота. Многослойное покрытие имеет наименьшее изменение параметра, возможно, из-за диффузионных барьеров. Искажения кристаллической решетки в одно- и многослойных покрытиях практически одинаковы. Все покрытия проявили тепловое расширение, схожее с подложкой. В многослойном покрытии создаются условия для сжимающих напряжений в одной фазе и растягивающих – в другой, поэтому срок службы многослойных покрытий ожидается высоким.
Обработка металлов (технология • оборудование • инструменты). 2023;25(4):202-215
pages 202-215 views

Влияние высокоэнергетического воздействия при плазменной резке на структуру и свойства поверхностных слоёв алюминиевых и титановых сплавов

Рубцов В.Е., Панфилов А.О., Княжев Е.О., Николаева А.В., Черемнов А.М., Гусарова А.В., Белобородов В.А., Чумаевский А.В., Гриненко А.В., Колубаев Е.А.

Аннотация

Введение. Плазменная резка различных металлов и сплавов является одним из наиболее производительных процессов получения заготовок, особенно при использовании плазмотронов с обратной полярностью. Применение плазменной резки при получении заготовок больших толщин потенциально позволяет повысить производительность получения заготовок. В отечественной промышленности широко применяется оборудование для плазменной резки зарубежного производства, что ставит задачи по импортозамещению выпускаемых деталей и устройств соответствующими изделиями российских предприятий. По этой причине в настоящее время в Институте физики прочности и материаловедения совместно с предприятием «ИТС-Сибирь» ведется разработка оборудования плазменной резки на токах обратной полярности. При этом для установления особенностей влияния параметров и режимов процесса плазменной резки на структуру металла в зоне реза необходимо проведение сравнительных исследований на различных металлах и сплавах. Цель работы: выявление особенностей влияния высокоэнергетического воздействия на структуру и свойства поверхностных слоёв алюминиевых и титановых сплавов при плазменной резке с использованием плазмотрона, работающего на токах обратной полярности. Методами исследований являются оптическая металлография, измерение микротвердости и лазерная сканирующая микроскопия поверхности после плазменной резки. Результаты и обсуждение. Проведенные исследования показывают широкие возможности регулирования параметров процесса плазменной резки алюминиевых сплавов АМг5 и Д16АТ и титанового сплава ВТ1-0. Для использованных в работе сплавов имеются оптимальные значения параметров процесса, отклонения от которых приводят к различным нарушениям качества реза. Сплавы алюминия демонстрируют склонность к существенному разупрочнению в зоне резки, что связано с формированием крупнокристаллической структуры и больших некогерентных выделений вторичных фаз с одновременным обеднением твердого раствора легирующими элементами. Для титановых сплавов характерно проявление закалочных эффектов в зоне реза с повышением значений микротвердости. В поверхностных слоях, несмотря на применение азота в качестве защитного газа, также формируются окислы. Причем в ранее проведенной работе в сплаве ОТ4-1 не отмечается формирования оксидных пленок с высокой твердостью, в то время как в сплаве ВТ1-0 при резке в поверхностных слоях формируются окислы, резко повышающие значения микротвердости материала вплоть до величин порядка 15 ГПа. Такое положение может затруднять механическую обработку титановых сплавов после плазменной резки. Полученные результаты свидетельствуют о достаточно невысокой величине припуска на дальнейшую механическую обработку после плазменной резки алюминиевых и титановых сплавов.
Обработка металлов (технология • оборудование • инструменты). 2023;25(4):216-231
pages 216-231 views

Особенности формирования Ni-Cr покрытий, полученных диффузионным легированием из среды легкоплавких жидкометаллических растворов

Бобылёв Э.Э., Стороженко И.Д., Маторин А.А., Марченко В.Д.

Аннотация

Введение. Рассмотрены основные способы увеличения работоспособности изделий, изготовленных из конструкционных сталей. Приведено обоснование выбора Ni и Cr в качестве основных компонентов покрытия. Приведено описание технологии диффузионного легирования из среды легкоплавких жидкометаллических растворов (ДЛЛЖР). Целью работы является выявление особенностей формирования покрытий при одновременном диффузионном насыщении никелем и хромом конструкционных сталей по технологии ДЛЛЖР. Методика исследований. ДЛЛЖР подвергались цилиндрические образцы диаметром 20 мм, длиной 30 мм. Образцы были изготовлены из конструкционных сталей марок Ст3, 30ХГСН2А, 40Х и 40Х13. В качестве технологической среды при ДЛЛЖР (транспортный расплав) использовался эвтектический расплав свинец-литий, в который в заданном количестве вводились никель и хром. ДЛЛЖР проводилось при 1050 °С в течение 300 минут. Металлографические исследования выполнялись на микрошлифах, подготовленных по стандартной методике. Исследования по определению толщины покрытий и их структуры проводились на микротвердомере Dura Scan Falcon 500. Определение элементного состава покрытий выполнялось методом микрорентгеноспектрального анализа (МРСА) на сканирующем электронном микроскопе Tescan Lyra 3 с системой РСМА Oxford Ultim MAX. Результаты и обсуждение. В результате исследований было выявлено, что при ДЛЛЖР происходит формирование диффузионных Ni-Cr покрытий. Проведение ДЛЛЖР на конструкционных углеродистых и низколегированных сталях приводит к формированию двухслойных покрытий: поверхностный карбидный слой и переходный твердорастворный. При этом содержание хрома в поверхностных слоях может достигать 80 % при содержании никеля 1,5 %. Максимальная концентрация никеля наблюдалась в переходном слое и составила 21 % на глубине 5 мкм на стали 30ХГСН2А и 13 % на глубине 4,5 мкм для стали 40Х. Проведение ДЛЛЖР на сталях, содержащих карбидообразующие элементы в значительном количестве или содержащих углерод в малом количестве, приводит к формированию однослойных покрытий на базе твердых растворов. При этом содержание никеля в покрытии достигает 40 %, содержание хрома для стали Ст3 составило 14,5 %, для стали 40Х13 – 9 %.
Обработка металлов (технология • оборудование • инструменты). 2023;25(4):232-243
pages 232-243 views

Формирование и исследование свойств покрытий из металлического стекла FeWCrMoBC на стали 35

Бурков А.А., Коневцов Л.А., Дворник М.И., Николенко С.В., Кулик М.А.

Аннотация

Введение. Для получения покрытий из металлического стекла необходимо достижение высоких скоростей охлаждения расплава. Композиция FeWCrMoBC обладает высокой вязкостью расплава и достаточной стеклообразующей способностью для фиксации аморфного состояния при скоростях охлаждения, реализуемых методом электроискрового легирования с использованием кристаллического электрода. Цель работы: одностадийное осаждение аморфного покрытия методом электроискрового легирования с использованием кристаллического анода FeWCrMoBC, приготовленного методом литья, и исследование свойств модифицированной поверхности стали 35: смачиваемости, жаростойкости и трибологических свойств. Методы и результаты. Структура анода и покрытий исследовалась методом рентгенофазового анализа в CuKα-излучении на дифрактометре ДРОН-7. На рентгенограммах покрытий, в отличие от рентгенограмм материала анода, не наблюдались острые брэгговские рефлексы, а присутствовало широкое гало в диапазоне углов 2? = 40…50°, что указывает на их аморфную структуру. Испытание на циклическую жаростойкость проводилось при температуре 700 °С в течение 100 часов. Износостойкость и коэффициент трения образцов исследовались при сухом трении скольжения на скорости 0,47 м/с при нагрузке 25 Н относительно контртела из быстрорежущей стали Р6М5. Исследовано влияние скважности электрических импульсов на характер массопереноса (эрозия анода, привес катода, коэффициент массопереноса) при формировании покрытия. С уменьшением скважности разрядных импульсов до 9 раз эрозия анода увеличивалась до 5 раз, а привес катода возрос до 2,2 раза. Максимальный коэффициент массопереноса достигался при наибольшей скважности импульсов. Наблюдалось повышение ряда свойств поверхности стали 35 после покрытия: твердость поверхности образцов после покрытия возросла в 2,3–2,6 раза; средняя толщина покрытий находилась в диапазоне 56–80,6 мкм, угол смачивания находился в диапазоне от 108,4 до 121,3°; коэффициент трения снизился в 1,2–1,4 раза; износостойкость возросла в 2–3,3 раза; окисляемость на воздухе снизилась до 14–18 раз. Область применения и выводы. Достигнутые более высокие свойства (твердость, износостойкость, жаростойкость, гидрофобность) исполнительных поверхностей деталей из стали 35 после нанесения предложенных покрытий могут быть использованы в различных отраслях машиностроительного производства. Результаты работы подтвердили возможность осаждения покрытий из металлического стекла методом электроискрового легирования с использованием анодного материала FeWCrMoBC на стали 35.
Обработка металлов (технология • оборудование • инструменты). 2023;25(4):244-254
pages 244-254 views

Синергетический подход к разработке легкого пористого металлического пеноматериала на основе алюминия с использованием литейно-металлургического метода

Шарма Ш.С., Хатри Р., Йоши А.

Аннотация

Введение. Представлен синергетический подход к разработке легкого алюминиевого металлического пенопласта литейно-металлургическим методом и протестированы различные механические свойства и микроструктура. Цель данного исследования обусловлена постоянным промышленным спросом на легкие материалы и возросшим исследовательским интересом к пористым подложкам главным образом из-за их уникальных свойств. Материалы и методы. Для создания металлической алюминиевой пены использовали литейно-металлургический метод, заключавшийся во введении в расплав алюминия карбоната кальция в качестве вспенивающего агента с последующим вспениванием для достижения желаемой взаимосвязанной пористой микромасштабной среды в рамках подложки из металлической пены. Результаты и обсуждение. В качестве результатов заявлен комплекс физических свойств, таких как объемная плотность (1,8 г/см3), относительная плотность (0,67 г/см3) и пористость (30 %) разработанных металлопен на основе алюминия. Разработанная металлическая пена имеет соотношение прочности к весу на 67 % выше, чем у основного материала. Кроме того, результаты автоэмиссионной сканирующей электронной микроскопии разработанной металлической пены подтверждают наличие структуры порового пространства с размером пор от 0,075 до 1,43 мм. Энергодисперсионная спектроскопия подтвердила наличие желаемых элементов с минимальным загрязнением в разработанных подложках из алюминиевой пены. Металлопена демонстрирует более высокую прочность на сжатие (607 кН) по сравнению с основным металлом (497 кН). Механические характеристики разработанной подложки из металлопены (твердость, прочность на сжатие и энергия удара) имеют ожидаемые значения по сравнению с основным материалом. В целом разработанная подложка из алюминиевой пены открыла многообещающий путь к разработке высокоэффективной легкой металлической пены для изготовления демпфирующих элементов и использования в акустике.
Обработка металлов (технология • оборудование • инструменты). 2023;25(4):255-267
pages 255-267 views

Моделирование эрозионного износа титанового сплава высокоскоростным потоком частиц

Строкач Е.А., Кожевников Г.Д., Пожидаев А.А., Добровольский С.В.

Аннотация

Введение. Прогнозирование износа деталей твердыми частицами в газовом потоке и управление его интенсивностью требует построения полноценной методики моделирования. Это связано с проведением большого количества частных исследований чувствительности и влияния параметров моделей разных физических процессов и последующей верификации результатов. Целью работы являлась разработка такой методики для частного случая – нормального натекания высокоскоростного потока твердых частиц кварца с неравномерным распределением по размерам на поверхность образца из сплава Ti6Al4V с помощью CFD методов. Методы. Течение газа описывалось уравнениями Навье – Стокса, осредненными по Рейнольдсу, где частицы, согласно Эйлер-Лагранжевой постановке, представлялись математическими точками с соответствующими свойствами. В работе исследовалось влияние двух параметрических моделей турбулентности, k-epsilon standard и RNG k-epsilon, а также относительно новой модели GEKO и ее параметров. На примере Oka и DNV оценивалось влияние моделей эрозии на интегральную скорость эродирования. В ходе исследования был затронут вопрос влияния формы частиц на профиль износа и итоговую скорость эродирования. Результаты моделирования сравнивались со специально проведенным лабораторным экспериментом, который позволил определить профиль износа и скорость уноса материала (скорость эродирования). Результаты и обсуждение. Результаты показали, что ни расчетный профиль износа, ни расчетная скорость эродирования не зависят от рассмотренных моделей турбулентности и их настроек. Наоборот, расчетная скорость износа ожидаемо существенно зависит от выбора полуэмпирической модели эрозии и калибровки коэффициентов. Интересным оказалось влияние коэффициента формы на расчетную картину износа и итоговую расчетную скорость эродирования. При увеличении лобового сопротивления за счет изменения формы частиц снижалась скорость эрозии, а профиль износа перестраивался вслед за частицами к форме кратера, сходной с экспериментальной. Ожидается, что наблюдаемые результаты будут полезны не только для прогнозирования износа в деталях и механизмах различных видов техники, но и при управлении износом, режимами обработки поверхностей для дробеударного упрочнения и формообразования.
Обработка металлов (технология • оборудование • инструменты). 2023;25(4):268-283
pages 268-283 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».