A systematic review of processing techniques for cellular metallic foam production

Cover Page

Cite item

Abstract

Introduction. The paper presents a comprehensive overview of the manufacturing methods, materials, properties, and challenges associated with cellular metallic foams, primarily focusing on aluminum and titanium-based foams. Cellular metallic foams are gaining interest due to its unique combination of low density, high stiffness, and enhanced energy absorption capabilities. Cellular metallic foam is renowned for its special combinations of physical and mechanical characteristics, containing their increased stiffness, specific strength at high temperatures, light weight, and good energy absorption at relatively low plateau stress. It has extensive uses in the automotive, shipbuilding and space industries. It has high porosity, low relative density and high strength, which increases performance of the product. The aerospace and automotive industries require a material with a high strength-to-weight ratio. Methods. To meet this need, many metal foam production methods have been developed, such as melt route method, deposition method and powder metallurgy method. Melt route method is widely used to manufacture metallic foam as compared to other methods. Results and Discussion. In the production of aluminum foams, the melt route method is usually used. Titanium hydride (TiH2) has been a popular foaming agent, but its high decomposition rate and cost limitations have led to the development of alternative foaming agents, such as CaCO3 (calcium carbonate). Titanium foam is often manufactured using the space holder method. This method involves mixing titanium powder with a space holder material, forming a preform, and then sintering to remove the space holder and produce a porous structure as the space holder method allows for precise control over the properties of the foam, including pore size, porosity, and relative density. Results also indicate that porosity in cellular metallic foams can range from 50 % to 95 %, as reported in various journals. Pore structures can include mixed types, open cells, and closed cells, each offering different mechanical and thermal properties. It is also observed from various literature sources that relative density, which is the ratio of the foam's density to the bulk material's density, varies from 0.02 to 0.44 based on the production method used.

About the authors

S. S. Sharma

Email: shyamsunder.sharma@jaipur.manipal.edu
Doctor of Technical Sciences, Associate Professor, Department of Mechanical Engineering, Manipal University Jaipur, Rajasthan, 303007, India, shyamsunder.sharma@jaipur.manipal.edu

A. Joshi

Email: anuragjoshi355@gmail.com
Doctor of Technical Sciences, Associate Professor, Department of Mechanical Engineering, Manipal University Jaipur, Rajasthan, 303007, India, anuragjoshi355@gmail.com

Y. S. Rajpoot

Email: yogendrasingh.rajpoot@recmainpuri.in
Assistant Professor, Department of Mechanical Engineering, Rajkiya Engineering College Mainpuri, Uttar Pradesh, 205119, India, yogendrasingh.rajpoot@recmainpuri.in

References

  1. Banhart J. Light-metal foams – History of innovation and technological challenges // Advanced Engineering Materials. – 2013. – Vol. 15 (3). – P. 82–111. – doi: 10.1002/adem.201200217.
  2. Sinha N., Srivastava V.C., Sahoo K.L. Processing and application of aluminium foams // Special Metal Casting and Forming Processes (CAFP-2008). – Jamshedpur, 2008. – P. 54–63.
  3. Banhart J., Baumeister J. Production methods for metallic foams // Materials Research Society Symposium – Proceedings. – 1998. – Vol. 521. – P. 121–132. – doi: 10.1557/proc-521-121.
  4. Kulshreshtha A., Dhakad S.K. Preparation of metal foam by different methods: A review // Materials Today: Proceedings. – 2020. – Vol. 26, pt. 2. – P. 1784–1790. – doi: 10.1016/j.matpr.2020.02.375.
  5. Singh S., Bhatnagar N. A survey of fabrication and application of metallic foams (1925–2017) // Journal of Porous Materials. – 2018. – Vol. 25 (2). – P. 537–554. – doi: 10.1007/s10934-017-0467-1.
  6. Karuppasamy R., Barik D. Production methods of aluminium foam: A brief review // Materials Today: Proceedings. – 2021. – Vol. 37, pt. 2. – P. 1584–1587. – doi: 10.1016/j.matpr.2020.07.161.
  7. Yuan J.Y., Li Y.X. Effect of orifice geometry on bubble formation in melt gas injection to prepare aluminum foams // Science China Technological Sciences. – 2015. – Vol. 58 (1). – P. 64–74. – doi: 10.1007/s11431-014-5669-z.
  8. The cell size reduction of aluminum foam with dynamic gas injection based on the improved foamable melt / N. Wang, X. Chen, Y. Li, Z. Liu, Z. Zhao, Y. Cheng, Y. Liu, H. Zhang // Colloids and Surfaces A: Physicochemical and Engineering Aspects. – 2017. – Vol. 527. – P. 123–131. – doi: 10.1016/j.colsurfa.2017.05.023.
  9. Goyal B., Pandey A. Critical review on porous material manufacturing techniques, properties & their applications // Materials Today: Proceedings. – 2021. – Vol. 46, pt. 17. – P. 8196–8203. – doi: 10.1016/j.matpr.2021.03.163.
  10. Porosity control in aluminium foams using different additives / G. Avinash, V. Harika, C. Sandeepika, R. Kumar, N. Gupta // Materials Today: Proceedings. – 2019. – Vol. 18. – P. 1054–1057. – doi: 10.1016/j.matpr.2019.06.563.
  11. Jaafar A.H., Al-Ethari H., Farhan K. Modelling and optimization of manufacturing calcium carbonate-based aluminum foam // Materials Research Express. – 2019. – Vol. 6 (8). – doi: 10.1088/2053-1591/ab2602.
  12. Ghaleh M.H., Ehsani N., Baharvandi H.R. High-porosity closed-cell aluminum foams produced by melting method without stabilizer particles // International Journal of Metalcasting. – 2021. – Vol. 15 (3). – P. 899–905. – doi: 10.1007/s40962-020-00528-w.
  13. Heidari Ghaleh M., Ehsani N., Baharvandi H.R. Compressive properties of A356 closed-cell aluminum foamed with a CaCO3 foaming agent without stabilizer particles // Metals and Materials International. – 2020. – Vol. 27 (10). – P. 3856–3861. – doi: 10.1007/s12540-020-00807-5.
  14. Investigation on the effect of aluminium foam made of A413 aluminium alloy through stir casting and infiltration techniques / R. Karuppasamy, D. Barik, N.M. Sivaram, M.S. Dennison // International Journal of Materials Engineering Innovation. – 2020. – Vol. 11 (1). – P. 34–50. – doi: 10.1504/IJMATEI.2020.104790.
  15. Yang C.C., Nakae H. Foaming characteristics control during production of aluminum alloy foam // Journal of Alloys and Compounds. – 2000. – Vol. 313 (1–2). – P. 188–191. – doi: 10.1016/S0925-8388(00)01136-1.
  16. Comparison of aluminium foams prepared by different methods using X-ray tomography / N. Wang, E. Maire, Y. Cheng, Y. Amani, Y. Li, J. Adrien, X. Chen // Materials Characterization. – 2018. – Vol. 138. – P. 296–307. – doi: 10.1016/j.matchar.2018.02.015.
  17. Shapovalov V. Prospective applications of gas-eutectic porous materials (gasars) in USA // Materials Science Forum. – 2007. – Vol. 539–543. – P. 1183–1187. – doi: 10.4028/ href='www.scientific.net/msf.539-543.1183' target='_blank'>www.scientific.net/msf.539-543.1183.
  18. Liu Y., Li Y., Wan J. Directional solidification of metal-gas eutectic and fabrication of regular porous metals // Frontiers of Mechanical Engineering in China. – 2007. – Vol. 2 (2). – P. 180–183. – doi: 10.1007/s11465-007-0030-x.
  19. Banhart J. Manufacturing Routes for very low specific // JOM. – 2000. – Vol. 52 (12). – P. 22–27.
  20. Güner A., Ar?kan M.M., Nebioglu M. New approaches to aluminum integral foam production with casting methods // Metals. – 2015. – Vol. 5 (3). – P. 1553–1565. – doi: 10.3390/met5031553.
  21. Gama N., Ferreira A., Barros-Timmons A. 3D printed thermoplastic polyurethane filled with polyurethane foams residues // Journal of Polymers and the Environment. – 2020. – Vol. 28 (5). – P. 1560–1570. – doi: 10.1007/s10924-020-01705-y.
  22. Sound absorption of open celled aluminium foam fabricated by investment casting method / X.F. Wang, X.F. Wang, X. Wei, F.S. Han, X.L. Wang // Materials Science and Technology. – 2011. – Vol. 27 (4). – P. 800–804. – doi: 10.1179/026708309X12506934374047.
  23. Lichy P., Bednarova V., Elbel T. Casting routes for porous metals production // Archives of Foundry Engineering. – 2012. – Vol. 12 (1). – P. 71–74. – doi: 10.2478/v10266-012-0014-0.
  24. Investigation of a template-based process chain for investment casting of open-cell metal foams / P. Kubelka, F. Körte, J. Heimann, X. Xiong, N. Jost // Advanced Engineering Materials. – 2022. – Vol. 24 (1). – doi: 10.1002/adem.202100608.
  25. Investment casting and mechanical properties of open-cell steel foams / J. Fromert, T.G. Lott, A.M. Matz, N. Jost // Advanced Engineering Materials. – 2019. – Vol. 21 (6). – P. 1–7. – doi: 10.1002/adem.201900396.
  26. Anglani A., Pacella M. Logistic regression and response surface design for statistical modeling of investment casting process in metal foam production // Procedia CIRP. – 2018. – Vol. 67. – P. 504–509. – doi: 10.1016/j.procir.2017.12.252.
  27. Kitazono K., Sato E., Kuribayashi K. Novel manufacturing process of closed-cell aluminum foam by accumulative roll-bonding // Scripta Materialia. – 2004. – Vol. 50 (4). – P. 495–498. – doi: 10.1016/j.scriptamat.2003.10.035.
  28. Asavavisithchai S., Kennedy A.R. The effect of Mg addition on the stability of Al-Al2O3 foams made by a powder metallurgy route // Scripta Materialia. – 2006. – Vol. 54 (7). – P. 1331–1334. – doi: 10.1016/j.scriptamat.2005.12.015.
  29. Manufacturing of Al-Mg-Si alloy foam using calcium carbonate as foaming agent / L.E.G. Cambronero, J.M. Ruiz-Roman, F.A. Corpas, J.M. Ruiz Prieto // Journal of Materials Processing Technology. – 2009. – Vol. 209 (4). – P. 1803–1809. – doi: 10.1016/j.jmatprotec.2008.04.032.
  30. Foaming agents for powder metallurgy production of aluminum foam / T. Koizumi, K. Kido, K. Kita, K. Mikado, S. Gnyloskurenko, T. Nakamura // Materials Transactions. – 2011. – Vol. 52 (4). – P. 728–733. – doi: 10.2320/matertrans.M2010401.
  31. Preparation principle and compression properties of cellular Mg–Al–Zn alloy foams fabricated by the gas release reaction powder metallurgy approach / D. Yang, S. Guo, J. Chen, C. Qiu, S.-O. Agbedor, A. Ma, J. Jiang, L. Wang // Journal of Alloys and Compounds. – 2021. – Vol. 857. – P. 158112. – doi: 10.1016/j.jallcom.2020.158112.
  32. Fabrication of aluminium foams from powder by hot extrusion and foaming / M. Shiomi, S. Imagama, K. Osakada, R. Matsumoto // Journal of Materials Processing Technology. – 2010. – Vol. 210 (9). – P. 1203–1208. – doi: 10.1016/j.jmatprotec.2010.03.006.
  33. Yu C.J. Metal foaming by a powder metallurgy method: Production, properties and applications // Materials Research Innovations. – 1998. – Vol. 2 (3). – P. 181–188. – doi: 10.1007/s100190050082.
  34. Kennedy A. Porous metals and metal foams made from powders // Powder Metallurgy / ed. by K. Kondoh. – InTech, 2012. – doi: 10.5772/33060.
  35. Influence of processing parameters on aluminium foam produced by space holder technique / R. Surace, L.A.C. de Filippis, A.D. Ludovico, G. Boghetich // Materials and Design. – 2009. – Vol. 30 (6). – P. 1878–1885. – doi: 10.1016/j.matdes.2008.09.027.
  36. Powder metallurgy with space holder for porous titanium implants: A review / A. Rodriguez-Contreras, M. Punset, J.A. Calero, F.J. Gil, E. Ruperez, J.M. Manero // Journal of Materials Science and Technology. – 2021. – Vol. 76. – P. 129–149. – doi: 10.1016/j.jmst.2020.11.005.
  37. Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route / N. Jha, D.P. Mondal, J. Dutta Majumdar, A. Badkul, A.K. Jha, A.K. Khare // Materials and Design. – 2013. – Vol. 47. – P. 810–819. – doi: 10.1016/j.matdes.2013.01.005.
  38. Sazegaran H., Feizi A., Hojati M. Effect of Cr contents on the porosity percentage, microstructure, and mechanical properties of steel foams manufactured by powder metallurgy // Transactions of the Indian Institute of Metals. – 2019. – Vol. 72 (10). – P. 2819–2826. – doi: 10.1007/s12666-019-01758-1.
  39. Microstructure and mechanical properties of metal foams fabricated via melt foaming and powder metallurgy technique: A review / B. Parveez, N.A. Jamal, H. Anuar, Y. Ahmad, A. Aabid, M. Baig // Materials. – 2022. – Vol. 15. – doi: 10.3390/ma15155302.
  40. Preliminary development of porous aluminum via powder metallurgy technique / N.A. Jamal, O. Maizatul, H. Anuar, F. Yusof, Y. Ahmad Nor, K. Khalid, M.N. Zakaria // Materialwissenschaft und Werkstofftechnik. – 2018. – Vol. 49 (4). – P. 460–466. – doi: 10.1002/mawe.201700269.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».