Фрезерование заготовок из мартенситной стали 40Х13, полученных с помощью аддитивных технологий

Обложка

Цитировать

Полный текст

Аннотация

Введение. В последние годы большее внимание уделяется аддитивным технологиям печати проволокой. Из-за особенностей печати проволокой твердость заготовки получается существенно выше, чем при традиционной ковке. Увеличение твердости приводит к увеличению силы резания. Целью работы является исследование силы резания при фрезеровании образцов из нержавеющей стали 40Х13, полученных методом электронно-лучевой наплавки. Методы исследования. Образцы получались наплавкой проволоки из мартенситной нержавеющей стали 40Х13. В работе исследована микроструктура образцов. Для проведения исследовательской работы была выбрана стандартная методика проведения экспериментов по определению сил резания. Однако для определения сил Pz и Py использовалась четырёхзубая (z = 4) фреза и ширина фрезерования была менее 2 мм. В работе исследованы образцы, полученные с помощью электронно-лучевой наплавки проволокой из стали 40Х13. Определены силы резания, возникающие при фрезеровании данных образцов. Результаты и обсуждение. Структура полученных электронно-лучевой наплавкой образцов – это мартенсит отпуска. Установлено, что высокоскоростное фрезерование, высокоэффективное фрезерование и встречное фрезерование подходят для обработки таких заготовок. Для обработки тонкостенных заготовок из мартенситной нержавеющей стали после их изготовления методом электронно-лучевой наплавки необходимо использовать попутное фрезерование. Полученные в исследовании режимы резания позволяют снизить температуру режущей кромки, силу резания и изгиб маложёсткой концевой фрезы. Так, в ходе исследования удалось подобрать режимы, позволяющие уменьшить вибрацию системы «станок – приспособление – инструмент – деталь».

Об авторах

Н. В. Мартюшев

Email: martjushev@tpu.ru
канд. техн. наук, доцент, Национальный исследовательский Томский политехнический университет, пр. Ленина, 30, г. Томск, 634050, Россия, martjushev@tpu.ru

В. В. Козлов

Email: kozlov-viktor@bk.ru
доктор физ.-мат. наук, профессор, Национальный исследовательский Томский политехнический университет, пр. Ленина, 30, г. Томск, 634050, Россия, kozlov-viktor@bk.ru

М. Ци

Email: mensyuy1@tpu.ru
Национальный исследовательский Томский политехнический университет, пр. Ленина, 30, г. Томск, 634050, Россия, mensyuy1@tpu.ru

А. Г. Багинский

Email: bagin@tpu.ru
Национальный исследовательский Томский политехнический университет, пр. Ленина, 30, г. Томск, 634050, Россия, bagin@tpu.ru

Ц. Хань

Email: hanzelizy@gmail.com
Национальный исследовательский Томский политехнический университет, пр. Ленина, 30, г. Томск, 634050, Россия, hanzelizy@gmail.com

А. С. Бовкун

Email: Bovas87@yandex.ru
канд. эконом. наук, доцент, Иркутский национальный исследовательский технический университет, ул. Лермонтова, 83, г. Иркутск, 664074, Россия, Bovas87@yandex.ru

Список литературы

  1. Alvarez L.F., Garcia C., Lopez V. Continuous cooling transformations in martensitic stainless steels // ISIJ International. – 1994. – Vol. 34 (6). – P. 516–521. – doi: 10.2355/isijinternational.34.516.
  2. On the microstructure and corrosion behavior of wire arc additively manufactured AISI 420 stainless steel / M. Kazemipour, J.H. Lunde, S. Salahi, A. Nasiri // TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings. – Springer, 2020. – P. 435–448. – doi: 10.1007/978-3-030-36296-6_41.
  3. Liverani E., Fortunato A. Additive manufacturing of AISI 420 stainless steel: Process validation, defect analysis and mechanical characterization in different process and post-process conditions // The International Journal of Advanced Manufacturing Technology. – 2021. – Vol. 117 (3–4). – P. 809–821. – doi: 10.1007/s00170-021-07639-6.
  4. Ultra-high strength martensitic 420 stainless steel with high ductility / K. Saeidi, D.L. Zapata, F. Lofaj, L. Kvetkova, J. Olsen, Z. Shen, F. Akhtar // Additive Manufacturing. – 2019. – Vol. 29. – P. 100803. – doi: 10.1016/j.addma.2019.100803.
  5. In situ heat treatment in selective laser melted martensitic AISI 420 stainless steels / P. Krakhmalev, I. Yadroitsava, G. Fredriksson, I. Yadroitsev// Materials & Design. – 2015. – Vol. 87. – P. 380–385. – doi: 10.1016/j.matdes.2015.08.045.
  6. Characterization of wire arc additive manufacturing 2Cr13 part: Process stability, microstructural evolution, and tensile properties / J. Ge, J. Lin, Y. Chen, Y. Lei, H. Fu // Journal of Alloys and Compounds. – 2018. – Vol. 748. – P. 911–921. – doi: 10.1016/j.jallcom.2018.03.222.
  7. Process parameters effect on weld beads geometry deposited by Wire and Arc Additive Manufacturing (WAAM) / S. Manokruang, F. Vignat, M. Museau, M. Limousin // Advances on Mechanics, Design Engineering and Manufacturing III. JCM 2020. – Springer, 2021. – P. 9–14. – doi: 10.1007/978-3-030-70566-4_3.
  8. Grzesik W. Hybrid additive and subtractive manufacturing processes and systems: a review // Journal of Machine Engineering. – 2018. – Vol. 18 (4). – P. 5–24. – doi: 10.5604/01.3001.0012.7629.
  9. Effect of milling parameters on HSLA steel parts produced by Wire and Arc Additive Manufacturing (WAAM) / J.G. Lopes, C.M. Machado, V.R. Duarte, T.A. Rodrigues, T.G. Santos, J.P. Oliveira // Journal of Manufacturing Processes. – 2020. – Vol. 59. – P. 739–749. – doi: 10.1016/j.jmapro.2020.10.007.
  10. New observations on wear characteristics of solid Al2O3/Si3N4 ceramic tool in high speed milling of additive manufactured Ti6Al4V / J. Dang, H. Zhang, W. Ming, Q. An, M. Chen // Ceramics International. – 2020. – Vol. 46 (5). – P. 5876–5886. – doi: 10.1016/j.ceramint.2019.11.039.
  11. Analysis of tool wear in cryogenic machining of additive manufactured Ti6Al4V alloy / A. Bordin, S. Bruschi, A. Ghiotti, P.F. Bariani // Wear. – 2015. – Vol. 328–329. – P. 89–99. – doi: 10.1016/j.wear.2015.01.030.
  12. Influence of finish machining on the surface integrity of Ti6Al4V produced by selective laser melting / S. Milton, A. Morandeau, F. Chalon, R. Leroy // Procedia CIRP. – 2016. – Vol. 45. – P. 127–130. – doi: 10.1016/j.procir.2016.02.340.
  13. Keist J.S., Palmer T.A. Development of strength-hardness relationships in additively manufactured titanium alloys // Materials Science and Engineering: A. – 2017. – Vol. 693. – P. 214–224. – doi: 10.1016/j.msea.2017.03.102.
  14. The effect of finish-milling operation on surface quality and wear resistance of Inconel 625 produced by selective laser melting additive manufacturing / E. Tascioglu. Yu. Kaynak, Ö. Poyraz. A. Orhangül, S. Ören // Advanced Surface Enhancement. INCASE 2019. – Springer, 2020. – P. 263–272. – doi: 10.1007/978-981-15-0054-1_27.
  15. Cutting forces analysis in additive manufactured AISI H13 alloy / F. Montevecchi, N. Grossi, H. Takagi, A. Scippa, H. Sasahara, G. Campatelli // Procedia CIRP. – 2016. – Vol. 46. – P. 476–479.
  16. Study on machinability of additively manufactured and conventional titanium alloys in micro-milling process / F. Hojati, A. Daneshi, B. Soltani, B. Azarhoushang, D. Biermann // Precision Engineering. – 2020. – Vol. 62. – P. 1–9. – doi: 10.1016/j.precisioneng.2019.11.002.
  17. Gong Y., Li P. Analysis of tool wear performance and surface quality in post milling of additive manufactured 316L stainless steel // Journal of Mechanical Science and Technology. – 2019. – Vol. 33. – P. 2387–2395. – doi: 10.1007/s12206-019-0237-x.
  18. Ni Ch., Zhu L., Yang Zh. Comparative investigation of tool wear mechanism and corresponding machined surface characterization in feed-direction ultrasonic vibration assisted milling of Ti–6Al–4V from dynamic view // Wear. – 2019. – Vol. 436. – P. 203006. – doi: 10.1016/j.wear.2019.203006.
  19. Xiong X., Haiou Z., Guilan W. A new method of direct metal prototyping: hybrid plasma deposition and milling // Rapid Prototyping Journal. – 2008. – Vol. 14 (1). – P. 53–56. – doi: 10.1108/13552540810841562.
  20. SLS setup and its working procedure / R. Ahmetshin, V. Fedorov, K. Kostikov, N. Martyushev, V. Ovchinnikov, A. Rasin, A. Yakovlev // Key Engineering Materials. – 2016. – Vol. 685. – P. 477–481. – doi: 10.4028/ href='www.scientific.net/KEM.685.477' target='_blank'>www.scientific.net/KEM.685.477.
  21. Martyushev N., Petrenko Yu. Effects of crystallization conditions on lead tin bronze properties // Advanced Materials Research. – 2014. – Vol. 880. – P. 174–178. – doi: 10.4028/ href='www.scientific.net/AMR.880.174' target='_blank'>www.scientific.net/AMR.880.174.
  22. Thermal pulse processing of blanks of small-sized parts made of beryllium bronze and 29 NK alloy / M.E. Isametova, N.V. Martyushev, Y.I. Karlina, R.V. Kononenko, V.Yu. Skeeba, B.N. Absadykov // Materials. – 2022. – Vol. 15. – P. 6682. – doi: 10.3390/ma15196682.
  23. Provision of rational parameters for the turning mode of small-sized parts made of the 29 NK alloy and beryllium bronze for subsequent thermal pulse deburring / N.V. Martyushev, D.A. Bublik, V.V. Kukartsev, V.S. Tynchenko, R.V. Klyuev, Y.A. Tynchenko, Y.I. Karlina // Materials. – 2023. – Vol. 16 (9). – P. 3490. – doi: 10.3390/ma16093490.
  24. Cahoon B.W.H., Broughton W.H., Kutzak A.R. The determination of yield strength from hardness measurements // Metallurgical Transactions. – 1971. – Vol. 2 (7). – P. 1979–1983. – doi: 10.1007/bf02913433.
  25. Abootorabi Zarchi M.M., Razfar M.R., Abdullah A. Influence of ultrasonic vibrations on side milling of AISI 420 stainless steel // The International Journal of Advanced Manufacturing Technology. – 2013. – Vol. 66. – P. 83–89. – doi: 10.1007/s00170-012-4307-9.
  26. Lou X., Andresen P.L., Rebak R.B. Oxide inclusions in laser additive manufactured stainless steel and their effects on impact toughness and stress corrosion cracking behavior // Journal of Nuclear Materials. – 2018. – Vol. 499. – P. 182–190. – doi: 10.1016/j.jnucmat.2017.11.036.
  27. Effect of heat treatment on microstructure, mechanical and corrosion properties of austenitic stainless steel 316L using arc additive manufacturing / X. Chen, J. Li, X. Cheng, H. Wang, Z. Huang // Materials Science and Engineering: A. – 2018. – Vol. 715. – P. 307–314. – doi: 10.1016/j.msea.2017.10.002.
  28. Production of workpieces from martensitic stainless steel using electron-beam surfacing and investigation of cutting forces when milling workpieces / N.V. Martyushev, V.N. Kozlov, M. Qi, V.S. Tynchenko, R.V. Kononenko, V.Y. Konyukhov, D.V. Valuev // Materials. – 2023. – Vol. 16. – P. 4529. – doi: 10.3390/ma16134529.
  29. Возможности атомно-силовой микроскопии для исследования микроструктуры нержавеющей стали при различных видах термообработки / Г.В. Шляхова, А.В. Бочкарёва, С.А. Баранникова, Л.Б. Зуев, Е.В. Мартусевич // Известия высших учебных заведений. Черная Металлургия. – 2017. – Т. 60 (2). – С. 133–139. – doi: 10.17073/0368-0797-2017-2-133-139.
  30. Хайдоров А.Д., Юнусов Ф.А. Вакуумная термическая обработка высоколегированных коррозионностойких сталей // Научно-технические ведомости СПбГПУ. – 2017. – Т. 23, № 1. –С. 226–235. – doi: 10.18721/JEST.230123.
  31. Mathematical modeling and multi-criteria optimization of design parameters for the gyratory crusher / V.P. Kondrakhin, N.V. Martyushev, R.V. Klyuev, S.N. Sorokova, E.A. Efremenkov, D.V. Valuev, Q. Mengxu // Mathematics. – 2023. – Vol. 11. – P. 2345. – doi: 10.3390/math11102345.
  32. Change in the properties of rail steels during operation and reutilization of rails / K. Yelemessov, D. Baskanbayeva, N.V. Martyushev, V.Yu. Skeeba, V.E. Gozbenko, A.I. Karlina // Metals. – 2023. – Vol. 13. – P. 1043. – doi: 10.3390/met13061043.
  33. Capabilities of laser printers with different power / R. Ahmetshin, V. Fedorov, K. Kostikov, N. Martyushev, V.A. Ovchinnikov, A. Razin, A. Yakovlev // Key Engineering Materials. – 2016. – Vol. 712. – P. 246–250. – doi: 10.4028/ href='www.scientific.net/KEM.712.246' target='_blank'>www.scientific.net/KEM.712.246.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».