The study of characteristics of the structure of metallic alloys using synchrotron radiation computed laminography (Research Review)

Cover Page

Cite item

Abstract

Introduction. The paper contains a review of research related to the use of synchrotron radiation computed laminography in the study of the structure features of metal alloys subjected to various methods of external action. Introduction. The important role of X-rays in the field of materials research is discussed. The capabilities of standard X-ray devices equipped with X-ray tubes and modern synchrotron radiation (SR) sources with unique parameters are compared. Methods for studying flat samples. Tomography and synchrotron laminography. An informative method based on the use of synchrotron X-rays is synchrotron radiation computed tomography (SRCT), which allows obtaining cross-section images of objects by processing multiple absorption radiographs. A brief classification of five generations of tomographs is presented. The problems encountered in obtaining data from non-compact (non-isometric) samples are avoided by using the method of synchrotron radiation computed laminography (SRCL), which combines the principles of laminography with the advantages of synchrotron imaging. Currently the method is used for non-destructive testing of non-isometric objects by a number of synchrotron radiation sources (ESRF, ANKA, Spring-8). Resolution of synchrotron radiation computed laminography. The use of monochromatic radiation in realization of computed laminography method is a factor, which provides high spatial resolution down to micron and submicron scale. An equally important factor is related to the characteristics of the detector. Images with a resolution of ~100 nm were obtained using nanolaminography. Comparison of laminography and tomography methods. Augmented laminography. Augmented laminography allows improving image quality by augmenting the Fourier space analyzed by laminography with information obtained from lower resolution CT. Reconstruction performed using Augmented laminography is characterized by the absence of significant artifacts and high resolution. Implementation of the laminography method. The angle of inclination of the rotary axis θ (SRCL method) is related to the geometry of samples and is determined experimentally in each case. In order to achieve the necessary resolution, the value θ should provide an optimal average value of the intensity of the passed radiation. The energy of X-rays is calculated on the basis of material characteristics. To reconstruct images of the objects, software complexes that implement the filtered back projection method based on the Radon transform are used. Examples of laminography application for analysis of metal alloys samples. The laminography method can be used for in-situ investigations allowing real time monitoring of processes occurring under different conditions of external action, e.g. during plastic deformation of metal plates. Data on formation of pore-type defects in the process of loading of metal workpieces are interesting. Numerous examples of post-mortem studies of metal alloys for various purposes are described in the literature. Important information is obtained in the study of fatigue cracks, as well as defects arising in the process of contact-fatigue loading of materials. Conclusion. The SRCT and SRCL methods are rationally implemented at the generation 4+ synchrotron radiation source “SKIF” under construction in Novosibirsk.

About the authors

O. M. Kutkin

Email: kutkino@list.ru
Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, kutkino@list.ru

I. A. Bataev

Email: i.bataev@corp.nstu.ru
D.Sc. (Engineering), Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, i.bataev@corp.nstu.ru

G. D. Dovzhenko

Email: g.dovjenko@skif.ru
Siberian Circular Photon Source "SKlF" Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences (SRF "SKIF"), Nikol'skii pr., 1, Kol'tsovo, 630559, Russian Federation, g.dovjenko@skif.ru

Z. B. Bataeva

Email: bataevazb@ngs.ru
Ph.D. (Engineering), Associate Professor, Siberian State University of water transport, 33 Schetinkina str., Novosibirsk, 630099, Russian Federation, bataevazb@ngs.ru

References

  1. Тернов И.М., Михайлин В.В. Синхротронное излучение: теория и эксперимент. – М.: Энергоатомиздат, 1986. – 296 с.
  2. On the implementation of computed laminography using synchrotron radiation / L. Helfen, A. Myagotin, P. Mikulík, P. Pernot, A. Voropaev, M. Elyyan, M. Di Michiel, J. Baruchel, T. Baumbach // Review of Scientific Instruments. – 2011. – Vol. 82. – P. 063702. – doi: 10.1063/1.3596566.
  3. Comparison of image quality in computed laminography and tomography / F. Xu, L. Helfen, T. Baumbach, H. Suhonen // Optics Express. – 2012. – Vol. 20. – P. 794–806. – doi: 10.1364/OE.20.000794.
  4. Ziedses des Plantes B.G. Eine neue methode zur differenzierung in der rontgenographie (planigraphies) // Acta Radiologica. – 1932. – Vol. 13. – P. 182–192. – doi: 10.3109/00016923209135135.
  5. Hounsfield G.M. A method and apparatus for the examination of a body by radiation such as X or gamma radiation. Patent Specifications, 1283915. – London: Patent office, 1972.
  6. Computed laminography for materials testing / J. Zhou, M. Maisl, H. Reiter, W. Arnold // Applied Physics Letters. – 1996. – Vol. 68. – P. 3500. – doi: 10.1063/1.115771.
  7. Марусина М.Я., Казначеева А.О. Современные виды томографии. – СПб.: СПбГУ ИТМО, 2006. – 132 с.
  8. Hounsfield G.M. Computed medical imaging. Nobel lecture, December 8, 1979 // Journal of Computer Assisted Tomography. – 1980. – Vol. 4. – P. 665–674. – doi: 10.1097/00004728-198010000-00017.
  9. High-resolution three-dimensional imaging of flat objects by synchrotron-radiation computed laminography / L. Helfen, T. Baumbach, P. Mikulík, D. Kiel, P. Pernot, P. Cloetens, J. Baruchel // Applied Physics Letters. – 2005. – Vol. 86. – P. 071915. – doi: 10.1063/1.1854735.
  10. Grant D.G. Tomosynthesis: a three-dimensional radiographic imaging technique // IEEE Transactions on Biomedical Engineering. – 1972. – Vol. BME-19. – P. 20–28. – doi: 10.1109/TBME.1972.324154.
  11. Lauritsch G., Härer W.H. Theoretical framework for filtered back projection in tomosynthesis // Proceedings of SPIE. – 1998. – Vol. 3338: Medical Imaging 1998: Image Processing, San Diego, CA, 1998. – P. 1127–1137. – doi: 10.1117/12.310839.
  12. Synchrotron and neutron laminography for three-dimensional imaging of devices and flat material specimens / L. Helfen, T.F. Morgeneyer, F. Xu, M.N. Mavrogordato, I. Sinclair, B. Schillinger, T. Baumbach // International Journal of Materials Research. – 2012. – Vol. 103. – P. 170–173. – doi: 10.3139/146.110668.
  13. Laminography in the lab: imaging planar objects using a conventional x-ray CT scanner / S.L. Fisher, D.J. Holmes, J.S. Jørgensen, P. Gajjar, J. Behnsen, W.R.B. Lionheart, P.J. Withers // Measurement Science and Technology. – 2019. – Vol. 30. – P. 035401. – doi: 10.1088/1361-6501/aafcae.
  14. Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays / P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J.P. Guigay, M. Schlenker // Applied Physics Letters. – 1999. – Vol. 75. – P. 2912–2914. – doi: 10.1063/1.125225.
  15. Nano-laminography for three-dimensional high-resolution imaging of flat specimens / L. Helfen, F. Xu, H. Suhonen, L. Urbanelli, P. Cloetens, T. Baumbach // Journal of Instrumentation. – 2016. – Vol. 8. – doi: 10.1088/1748-0221/8/05/C05006.
  16. Augmented laminography, a correlative 3D imaging method for revealing the inner structure of compressed fossils / M. Zuber, M. Laaß, E. Hamann, S. Kretschmer, N. Hauschke, Th. Van de Kamp, T. Baumbach, T. Koenig // Scientific Reports. – 2017. – Vol. 7. – doi: 10.1038/srep41413.
  17. Kak A.C., Slaney M. Principles of computerized tomographic imaging. – Philadelphia: Society of Industrial and Applied Mathematics, 2001. – 327 p. – (Classics in applied mathematics; 33). – doi: 10.1137/1.9780898719277.
  18. Relics in medieval altarpieces? Combining X-ray tomographic, laminographic and phase-contrast imaging to visualize thin organic objects in paintings / K. Krug, L. Porra, P. Coan, A. Wallert, J. Dik, A. Coerdt, A. Bravin, M. Elyyan, P. Reischig, L. Helfen, T. Baumbach // Journal of Synchrotron Radiation. – 2008. – Vol. 15. – P. 55–61. – doi: 10.1107/S0909049507045438.
  19. Three-dimensional Imaging of paint layers and paint substructures with synchrotron radiation computed μ-laminography / J. Dik, P. Reischig, K. Krug, A. Wallert, A. Coerdt, L. Helfen, T. Baumbach // Journal of the American Institute for Conservation. – 2009. – Vol. 48. – P. 185–197. – doi: 10.1179/019713612804514260.
  20. Three-dimensional pelvis and limb anatomy of the Cenomanian hind-limbed snake Eupodophis descouensi (Squamata, Ophidia) revealed by synchrotron-radiation computed laminography / A. Houssaye, F. Xu, L. Helfen, V.D. Buffrénil, T. Baumbach, P. Tafforeau, J. Vertebr // Journal of Vertebrate Paleontology. – 2011. – Vol. 31. – P. 2–7. – doi: 10.1080/02724634.2011.539650.
  21. In situ synchrotron computed laminography of damage in carbon fibre–epoxy [90/0]s laminates / A.J. Moffat, P. Wright, L. Helfen, T. Baumbach, G. Johnson, S.M. Spearing, I. Sinclair // Scripta Materialia. – 2010. – Vol. 62. – P. 97–100. – doi: 10.1016/j.scriptamat.2009.09.027.
  22. In situ local imaging and analysis of impregnation during liquid moulding of composite materials using synchrotron radiation computed laminography / J. Castro, F. Sket, L. Helfen, C. Gonzalez // Composites Science and Technology. – 2021. – Vol. 215. – doi: 10.1016/j.compscitech.2021.108999.
  23. Ueda T., Helfen L., Morgeneyer T.F. In situ laminography study of three-dimensional individual void shape evolution at crack initiation and comparison with Gurson–Tvergaard–Needleman-type simulations // Acta Materialia. – 2014. – Vol. 78. – P. 254–270. – doi: 10.1016/j.actamat.2014.06.029.
  24. In situ 3-D observation of early strain localization during failure of thin Al alloy (2198) sheet / T.F. Morgeneyer, T. Taillandier-Thomas, L. Helfen, T. Baumbach, I. Sinclair, S. Roux, F. Hild // Acta Materialia. – 2014. – Vol. 69. – P. 78–91. – doi: 10.1016/j.actamat.2014.01.033.
  25. Ductile crack initiation and propagation assessed via in situ synchrotron radiation-computed laminography / T.F. Morgeneyer, L. Helfen, I. Sinclair, H. Proudhon, F. Xu, T. Baumbach // Scripta Materialia. – 2011. – Vol. 65. – P. 1010–1013. – doi: 10.1016/j.scriptamat.2011.09.005.
  26. Three-dimensional quantitative in situ study of crack initiation and propagation in AA6061 aluminum alloy sheets via synchrotron laminography and finite-element simulations / Y. Shen, T.F. Morgeneyer, J. Garnier, L. Allais, L. Helfen, J. Crépin // Acta Materialia. – 2013. – Vol. 61. – P. 2571–2582. – doi: 10.1016/j.actamat.2013.01.035.
  27. D digital volume correlation of synchrotron radiation laminography images of ductile crack initiation: an initial feasibility study / T.F. Morgeneyer, L. Helfen, H. Mubarak, F. Hild // Experimental Mechanics. – 2012. – Vol. 53. – P. 543–556. – doi: 10.1007/s11340-012-9660-y.
  28. Parallel?beam imaging at the ESRF beamline ID19: current status and plans for the future / T. Weitkamp, P. Tafforeau, E. Boller, P. Cloetens, J.-P. Valade, P. Bernard, F. Peyrin, W. Ludwig, L. Helfen, J. Baruchel // AIP Conference Proceedings. – 2010. – Vol. 1234. – doi: 10.1063/1.3463345.
  29. Ductile damage of AA2024-T3 under shear loading: mechanism analysis through in-situ laminography / T. Tancogne-Dejeana, C.C. Roth, T.F. Morgeneyer, L. Helfen, D. Mohr // Acta Materialia. – 2021. – Vol. 205. – P. 116556. – doi: 10.1016/j.actamat.2020.116556.
  30. Roth C., Mohr D. Ductile fracture experiments with locally proportional loading histories // International Journal of Plasticity. – 2015. – Vol. 79. – P. 328–354. – doi: 10.1016/j.ijplas.2015.08.004.
  31. Synchrotron-radiation computed laminography for high-resolution three-dimensional imaging of flat devices / L. Helfen, A. Myagotin, A. Rack, P. Pernot, P. Mikulík, M. Di Michiel, T. Baumbach // Physica Status Solidi (A). – 2007. – Vol. 204. – P. 2760–2765. – doi: 10.1002/pssa.200775676.
  32. Efficient volume reconstruction for parallel-beam computed laminography by filtered backprojection on multi-core clusters / A. Myagotin, A. Voropaev, L. Helfen, D. Hänschke, T. Baumbach // IEEE Transactions on Image Processing. – 2013. – Vol. 32. – P. 5348–5361. – doi: 10.1109/TIP.2013.2285600.
  33. Elucidation of pore connection mechanism during ductile fracture of sintered pure iron by applying persistent homology to 4D images of pores: role of open pore / I. Ando, Y. Mugita, K. Hirayama, S. Munetoh, M. Aramaki, F. Jiang, T. Tsuji, A. Takeuchi, M. Uesugi, Y. Ozaki // Materials Science and Engineering A. – 2021. – Vol. 828. – P. 142112. – doi: 10.1016/j.msea.2021.142112.
  34. Development of an x?ray micro?laminography system at SPring?8 / M. Hoshino, K. Uesugi, A. Takeuchi, Y. Suzuki, N. Yagi // AIP Conference Proceedings. – 2011. – Vol. 1365. – P. 250–253. – doi: 10.1063/1.3625351.
  35. Obayashi I. Volume-optimal cycle: tightest representative cycle of a generator in persistent homology // SIAM Journal on Applied Algebra and Geometry. – 2018. – Vol. 2. – P. 508–534. – doi: 10.1137/17M1159439.
  36. Void growth and coalescence in a magnesium alloy studied by synchrotron radiation laminography / B. Kondori, T.F. Morgeneyer, L. Helfen, A.A. Benzerga // Acta Materialia. – 2018. – Vol. 155. – P. 80–94. – doi: 10.1016/j.actamat.2018.05.026.
  37. Kondori B., Benzerga A.A. Effect of stress triaxiality on the flow and fracture of Mg alloy AZ31 // Metallurgical and Materials Transactions A. – 2014. – Vol. 45. – P. 3292–3307. – doi: 10.1007/s11661-014-2211-7.
  38. Effect of laser peening on the mechanical properties of aluminum alloys probed by synchrotron radiation and x-ray free electron laser / Y. Sano, K. Masaki, K. Akita, K. Kajiwara, T. Sano // Metals. – 2020. – Vol. 10. – P. 1490. – doi: 10.3390/met10111490.
  39. Effects of inclusion size and orientation on rolling contact fatigue crack initiation observed by laminography using ultra-bright synchrotron radiation / Y. Nakai, D. Shiozawaa, S. Kikuchia, T. Obamaa, H. Saitoa, T. Makinob, Y. Neishi // Procedia Structural Integrity. – 2016. – Vol. 2. – P. 3117–3124. – doi: 10.1016/j.prostr.2016.06.389.
  40. Observation of rolling contact fatigue cracks by laminography using ultra-bright synchrotron radiation / D. Shiozawa, T. Makino, Y. Neishi, Y. Nakai // Procedia Materials Science. – 2014. – Vol. 3. – P. 159–164. – doi: 10.1016/j.mspro.2014.06.030.
  41. D observations of rolling contact fatigue processes by laminography using ultra-bright synchrotron radiation / Y. Nakai, D. Shiozawa, S. Kikuchi, T. Obama, H. Saito, T. Makino, Y. Neishi // Engineering Fracture Mechanics. – 2017. – Vol. 183. – P. 180–189. – doi: 10.1016/j.engfracmech.2017.03.021.
  42. Synchrotron and neural network analysis of the influence of composition and heat treatment on the rolling contact fatigue of hypereutectoid pearlitic steels / W. Solano-Alvarez, M.J. Peet, E.J. Pickering, J. Jaiswal, A. Bevan, H.K.D.H. Bhadeshia // Materials Science and Engineering: A. – 2017. – Vol. 707. – P. 259–269. – doi: 10.1016/j.msea.2017.09.045.
  43. Rail rolling contact fatigue formation and evolution with surface defects / S.Y. Zhang, M. Spiryagin, H.H. Ding, Q. Wu, J. Guo, Q.Y. Liu, W.J. Wang // International Journal of Fatigue. – 2022. – Vol. 158. – P. 106762. – doi: 10.1016/j.ijfatigue.2022.106762.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».