Surface alloying of titanium with aluminium by non-vacuum electron beam cladding of powder mixtures

Cover Page

Cite item

Full Text

Abstract

Titanium aluminides are promising materials for structural and high temperature applications. They possess low density and a high strength level which are very important properties for the aircraft. However, they have a range of disadvantages. Among them, there are low plasticity and crack growth resistance. One of the solutions which allow making use of beneficial properties of intermetallics consists in the formation of intermetallic layers on the surface of metallic samples. In this study the method of non-vacuum electron beam cladding of powder mixtures consisted of aluminium and titanium was used to obtain the surface layers reinforced with intermetallics on cp-titanium workpieces. Microstructure, microhardness and tribological properties of surface alloyed materials were investigated. An average thickness of coatings was about 2 mm. The microstructure of coatings was characterized mainly by formation of lamellar crystals. The maximum microhardness level of the coatings was about 600 HV. The reasons of microhardness increase consisted in the formation of titanium aluminides and action of the solid solution hardening mechanism. Phase composition of different clads varied from γ-TiAl to α-Ti according to Al percentage in the powder mixture. In comparison with cp-titanium the obtained materials possessed a lower level of a friction coefficient and a lower tendency to adhesion at a contact with a steel indenter. The best results obtained in the process of a sliding friction test were obtained for the Ti-Al(10/35) sample. It possessed 3-4-fold decrease of a friction coefficient compared to pure titanium. Relative wear resistance values obtained during interaction of samples with fixed abrasive particles correlated with their microhardness.

About the authors

I. A Bataev

Novosibirsk State Technical University

Email: ivanbataev@ngs.ru
20, Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation

D. V Lazurenko

Novosibirsk State Technical University

Email: pavlyukova_87@mail.ru
20, Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation

M. G Golkovski

Budker Institute of Nuclear Physics

Email: mikhail.golkowsky@yandex.ru
11, akademika Lavrentieva prospect, Novosibirsk, 630090, Russian Federation

I. S Laptev

Novosibirsk State Technical University

Email: ilya_laptev_nstu@mail.ru
20, Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation

I. K Chakin

Budker Institute of Nuclear Physics

Email: tchakin.ivan@yandex.ru
11, akademika Lavrentieva prospect, Novosibirsk, 630090, Russian Federation

I. S Ivanchik

Siberian State University of Water Transport

Email: ivanchik.ilya@yandex.ru
33, Schetinkina st., Novosibirsk, 630099, Russian Federation

References

  1. Murray J.L. The Al-Ti (aluminum-titanium) system // Phase Diagrams of Binary Titanium Alloy. - Materials Park, Ohio: ASM International, 1987. - P. 12-24. - ISBN 0871702487. - eISBN 9780871702487.
  2. Schuster J.C., Palm M. Reassessment of the binary aluminum-titanium phase diagram // Journal of Phase Equilibria and Diffusion. - 2006. - Vol. 27, iss. 3. - P. 255-277. - doi: 10.1361/154770306X109809.
  3. Mishin Y., Herzig Chr. Diffusion in the Ti-Al system // Acta Materialia. - 2000. - Vol. 48, iss. 3. - P. 589-623. - doi: 10.1016/S1359-6454(99)00400-0.
  4. Кристаллогеометрические и кристаллохимические закономерности образования бинарных и тройных соединений на основе титана и никеля: монография / А.А. Клопотов, А.И. Потекаев, Э.В. Козлов, Ю.И. Тюрин, К.П. Арефьев, Н.О. Солоницина, В.Д. Клопотов; под общ. ред. А.И. Потекаева. - 2-е изд., стер. - М.: Флинта, 2011. - 312 с. - ISBN 978-5-9765-1214-6.
  5. Sahu P. Lattice imperfections in intermetallic Ti-Al alloys: an X-Ray diffractions study of the microstructure by the Rietveld method // Intermetallics. - 2006. - Vol. 14. - P. 180-188. - doi: 10.1016/j.intermet.2005.05.004.
  6. Frobel U., Appel F. Strain ageing in g(TiAl)-based titanium aluminides due to antisite atoms // Acta Materialia. - 2002. - Vol. 50. - P. 3693-3707. - doi: 10.1016/S1359-6454(02)00182-9.
  7. Иванов В.И., Ясинский К.К. Эффективность применения жаропрочных сплавов на основе интерметаллидов Ti3Al и TiAl для работы при температурах 600-800 °С в авиакосмической технике // Технология легких сплавов. - 1996. - № 3. - С. 63-68.
  8. Суперсплавы II: жаропрочные материалы для аэрокосмических и промышленных энергоустановок. В 2 кн.: пер. с англ. / под ред. Ч.Т. Симса, Н.С. Столоффа, У.К. Хагеля. - М.: Металлургия, 1995.
  9. Huang S.C. Alloying considerations in gamma-based alloys // The 1st International Symposium on Structural Intermetallics, Champion, PA, 26-30 September 1993: proceedings. - Champion, PA: TMS, 1993. - P. 299-308. - ISBN 0-87339-253-1.
  10. Appel F., Paul J.D.H., Oehring M. Gamma titanium aluminide alloys: science and technology. - Weinheim: Wiley-VCH, 2011. - 745 p. - ISBN 9783527315253. - eISBN 9783527636204. - doi: 10.1002/9783527636204.
  11. Explosively welded multilayer Ti-Al composites: structure and transformation during heat treatment / D.V. Lazurenko, I.A. Bataev, V.I. Mali, A.A. Bataev, Iu.N. Maliutina, V.S. Lozhkin, M.A. Esikov, A.M.J. Jorge // Materials & Design. - 2016. - Vol. 102. - P. 122-130. - doi: 10.1016/j.matdes.2016.04.037.
  12. Metal-intermetallic laminate Ti-Al3Ti composites produced by spark plasma sintering of titanium and aluminum foils enclosed in titanium shells / D. Lazurenko, V. Mali, I. Bataev, A. Thoemmes, A. Bataev, A. Popelukh, A. Anisimov, N. Belousova // Metallurgical and Materials Transactions A. - 2015. - Vol. 46, iss. 9. - P. 4326-4334. - doi: 10.1007/s11661-015-3002-5.
  13. Miyake M., Tajikara S., Hirato T. Fabrication of TiAl3 coating on TiAl-based alloy by Al electrodeposition from dimethylsulfone bath and subsequent annealing // Surface and Coatings Technology. - 2011. - Vol. 205, iss. 21-25. - P. 5141-5146. - doi: 10.1016/j.surfcoat.2011.05.019.
  14. Parlikar C., Alam M.Z., Das D.K. Effect of Al3Ti diffusion aluminide coating on tensile properties of a near α-Ti alloy // Materials Science and Engineering: A. - 2011. - Vol. 530. - P. 565-573. - doi: 10.1016/j.msea.2011.10.021.
  15. Leyens C., Peters M., Kaysser W.A. Intermetallic Ti-Al coatings for protection of titanium alloys: oxidation and mechanical behavior // Surface and Coatings Technology. - 1997. - Vol. 94-95. - P. 34-40. - doi: 10.1016/S0257-8972(97)00472-6.
  16. In situ synthesis of titanium-aluminides in coating with supersonic free-jet pvd using ti and al. nanoparticles / A. Yumoto, F. Hiroki, I. Shiota, N. Niwa // Surface and Coatings Technology. - 2003. - Vol. 169-170. - P. 499-503. - doi: 10.1016/S0257-8972(03)00152-X.
  17. Laser cladding of γ-TiAl intermetallic alloy on titanium alloy substrates / Iu.N. Maliutina, H. Si-Mohand, R. Piolet, F. Missemer, A.I. Popelyukh, N.S. Belousova, Ph. Bertrand // Metallurgical and Materials Transactions A. - 2014. - Vol. 47, iss. 1. - P. 378-387. - doi: 10.1007/s11661-015-3205-9.
  18. Atmospheric electron-beam surface alloying of titanium with tantalum / M.G. Golkovski, I.A. Bataev, A.A. Bataev, A.A. Ruktuev, T.V. Zhuravina, N.K. Kuksanov, R.A. Salimov, V.A. Bataev // Materials science and Engineering: A. - 2013. - Vol. 578. - P. 310-317. - doi: 10.1016/j.msea.2013.04.103.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).