Formation of Coatings Based on Boron and Aluminum on the Surface of Carbon Steels by Electron Beam Alloying

Cover Page

Cite item

Full Text

Abstract

Introduction. Boronizing and boroaluminizing are effective methods used to improve the surface properties of machine parts and tools. However, its application in industrial production is often restricted. High brittleness of boronized and boroaluminized layers is one of the restraining factors. Conventional methods of boronizing and boroaluminizing with furnace heating are aimed at the formation of needle and layered structured layers respectively. As a rule, the hardest and most brittle phases are formed on top of these layers, such as FeB and Fe2Al5. The purpose of the work: to study the phase formation sequence in boronized and boroaluminized layers obtained after electron beam treatment in vacuum on the surface of carbon steels. The methods of investigation. Alloying with either boron carbide (electron beam boronizing) or boron carbide and aluminum (electron beam boroaluminizing) is applied. Different modes of electron beam processing are tested: accelerating voltage, beam current and irradiation time. Microstructure, microhardness, element and phase composition of obtained layers are investigated. Results and Discussion. It is established that the phase formation at electron beam alloying with boron carbide occurs according to diagram Fe-B, where iron monoboride FeB is the nucleate phase. FeB iron monoboride crystallizes in the form of rhombic and prismatic crystals and Fe2B appears in the form of rounded dendrites. Thus, FeB crystals come out as being enclosed into Fe2B shells. The remaining liquid crystallizes as a eutectic system during cooling. This pattern formation of layer is also valid for the electron beam boroaluminizing. The only difference is the eutectic’;s composition, which consists of Fe2B phase and solid solutions of aluminum and boron in α-Fe. Generally, the microstructure of obtained layer after electron beam treatment is more preferable than the ones after conventional treatment with furnace heating. The layer structure with hard and brittle FeB surrounded by Fe2B and eutectic lead to an increase in its mechanical properties.

About the authors

U. L. Mishigdorzhiyn

Email: druh@mail.ru
Ph.D. (Engineering), East Siberia State University of Technology and Management, druh@mail.ru

I. G. Sizov

Email: sigperlit@mail.ru
D.Sc. (Engineering), Professor, East Siberia State University of Technology and Management, sigperlit@mail.ru

I. P. Polyansky

Email: i.polyansky@mail.ru
East Siberia State University of Technology and Management, i.polyansky@mail.ru

References

  1. Weglowski M.St., Blacha S., Phillips A. Electron beam welding – Techniques and trends – Review // Vacuum. – 2016. – Vol. 130. – P. 72–92. – doi: 10.1016/j.vacuum.2016.05.004.
  2. Методы и средства упрочнения поверхностей деталей машин концентрированными потоками энергии / А.П. Семенов, И.Б. Ковш, И.М. Петрова и др. – М.: Наука, 1992. – 403 с.
  3. Electron beam cladding and alloying of AISI 316 on plain carbon steel: microstructure and electrochemical corrosion behavior / A. La Barbera, A. Mignone, S. Tosto, C. Vignaud // Surface and Coatings Technology. – 1991. – Vol. 46, iss. 3. – P. 317–329. – doi: 10.1016/0257-8972(91)90174-U.
  4. Sizov I.G., Smirnyagina N.N., Semenov A.P. Special features of electron-beam boronizing of steels // Metal Science and Heat Treatment. – 1999. – Vol. 41. – P. 516–519. – doi: 10.1007/BF02466542.
  5. Упрочнение поверхности литой стали комплексным диффузионным насыщением бором и хромом / В.Л. Мосоров, А.М. Гурьев, Б.Д. Лыгденов, Д.С. Фильчаков // Обработка металлов (технология, оборудование, инструменты). – 2011. – № 2. – С. 33–36.
  6. Suwattananont N., Petrova R. Formation of multi-component boronization by adding transition metal group VIB // Solid State Sciences. – 2012. – Vol. 14. – P. 1669–1672. – doi: 10.1016/j.solidstatesciences.2012.06.008.
  7. Sizov I.G., Mishigdorzhiyn U.L., Maharov D.M. A study of thermocycling boroaluminizing of carbon steel // Metals Science and Heat Treatment. – 2012. – Vol. 53, iss. 11–12. – P. 592–597. – doi: 10.1007/s11041-012-9440-4.
  8. Boron–aluminide coatings applied by pack cementation method on low-alloy steels / N.E. Maragoudakis, G. Stergioudis, H. Omar, H. Paulidou, D.N. Tsipas // Materials Letters. – 2002. – Vol. 53. – Р. 406–410. – doi: 10.1016/S0167-577X(01)00515-8.
  9. Сизов И.Г. Оценка хрупкости боридных слоев после электронно-лучевого борирования // Современные наукоемкие технологии. – 2005. – № 11. – С. 77–78.
  10. Влияние процесса бороалитирования в пастах на повышение стойкости деталей литейной оснастки / И.Г. Сизов, У.Л. Мишигдоржийн, А.Н. Телешев, Д.М. Махаров // Технология металлов. – 2011. – № 8. – С. 23–26.
  11. Влияние состава насыщающих обмазок на структуру и свойства бороалитированного слоя / И.Г. Сизов, И.П. Полянский, У.Л. Мишигдоржийн, Д.М. Махаров // Обработка металлов (технология, оборудование, инструменты). – 2013. – № 1 (58). – С. 22–25.
  12. Морфология боридов железа в поверхностном слое, наплавленном электронным лучом / И.А. Батаев, Н.В. Курлаев, О.Г. Ленивцева, О.А. Бутыленкова, А.А. Лосинская // Обработка металлов (технология, оборудование, инструменты). – 2012. – № 1 (54). – С. 85–89.
  13. Krukovich M.G., Prusakov B.A., Sizov I.G. Plasticity of boronized layers. – 1st ed. – Cham: Springer, 2016. – 364 p. – ISBN 978-3-319-40011-2.
  14. Лякишев Н.П., Плинер Ю.Л., Лаппо С.И. Борсодержащие стали и сплавы. – М.: Металлургия, 1986. – 190 с.
  15. Бочвар А.А. Металловедение: учебник для втузов. – М.: Металлургиздат, 1956. – 495 с.
  16. Таран Ю.Н., Мазур В.Н. Структура эвтектических сплавов. – М.: Металлургия, 1978. – 312 с.
  17. Банных О.А., Будберг П.Б., Алисова С.П. Диаграммы состояния двойных и многокомпонентных систем на основе железа. – М.: Металлургия, 1986. – 440 с.
  18. Rogl P. Aluminium – Boron – Iron // Ternary alloy systems: phase diagrams, crystallographic and thermodynamic data. Subvol. D. Iron systems, pt. 1 / ed. by G. Effenberg, S. Ilyenko. – Berlin; Heidelberg: Springer, 2008. – doi: 10.1007/978-3-540-69761-9_3.
  19. Influence of process duration on structure and chemistry of borided low carbon steel / G. Kartal, S. Timur, O.L. Eryilmaz, A. Erdemir // Surface and Coatings Technology. – 2010. – Vol. 205. – P. 1578–1583. – doi: 10.1016/j.surfcoat.2010.08.050.
  20. Xie F., Wang X.-J., Pan J.-W. Accelerate pack boriding with reused boriding media by simultaneously employing Al and alternating current field // Vacuum. – 2017. – Vol. 141. – P. 166–169. – doi: 10.1016/j.vacuum.2017.04.011.
  21. Xie F., Sun L., Cheng J. Alternating current field assisted pack boriding to Fe2B coating // Surface Engineering. – 2013. – Vol. 29. – P. 240–243. – doi: 10.1179/1743294412Y.0000000104.
  22. Keddam M., Chentouf S.M. A diffusion model for describing the bilayer growth (FeB/Fe2B) during the iron powder-pack boriding // Applied Surface Science. – 2005. – Vol. 252, iss. 4. – P. 393–399. – doi: 10.1016/j.apsusc.2005.01.016.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).