Модель формирования состава многослойного покрытия при осаждении из плазмы

Обложка

Цитировать

Полный текст

Аннотация

Введение. Современная техника эксплуатируется, как правило, в условиях высоких механических нагрузок и повышенных температур, что, в свою очередь, приводит к необходимости создания новых материалов, имеющих повышенные физико-механические свойства. Для повышения эксплуатационных свойств деталей машин все большее распространение получают методы магнетронного и вакуумно-дугового нанесения покрытий из тугоплавких материалов. Математическое моделирование является хорошей альтернативой подробных экспериментальных исследований, позволяющих изучить отдельные явления на разных стадиях роста покрытия и дать прогноз относительно изменения состава и макроскопических свойств покрытия при варьировании технологических условий. Это, в свою очередь, позволяет оптимизировать технологический процесс. Цель работы: определение степени влияния перекрестных эффектов, а также взаимного влияния процессов переноса на формирование состава многослойного покрытия при осаждении из плазмы на подложку. В работе исследованы связанная математическая модель формирования состава многослойного покрытия при осаждении из плазмы титана, хрома и азота. В модели учитываются влияние градиента напряжений на потоки тепла и масс, термодиффузия и диффузионная теплопроводность. Методами исследования являются вычислительные методы. Результаты и обсуждение. Теоретически исследовано влияние перекрестных эффектов, а также взаимного влияния процессов переноса в формировании состава многослойного покрытия, осаждаемого из плазмы. Показано, что состав плазмы влияет на эволюцию состава покрытия. Определено, что учет переноса массы и тепла за счет градиента напряжений оказывает ощутимое влияние на состав покрытия. Обнаружено, что для выбранных систем термодиффузия и диффузионная теплопроводность оказывают влияние на распределение концентраций только на начальной стадии процесса осаждения покрытия.

Об авторах

С. А. Шанин

Email: shanin_s@mail.ru
кандидат физико-математических наук, Национальный исследовательский Томский политехнический университет, shanin_s@mail.ru

Е. А. Ефременков

Email: ephrea@mail.ru
кандидат технических наук, Национальный исследовательский Томский политехнический университет, ephrea@mail.ru

Список литературы

  1. Fan W., Bai Y. Review of suspension and solution precursor plasma sprayed thermal barrier coatings // Ceramics International. – 2016. – Vol. 42, iss. 13. – P. 14299–14312. – doi: 10.1016/j.ceramint.2016.06.063.
  2. Bobzin K. High-performance coatings for cutting tools // CIRP Journal of Manufacturing Science and Technology. – 2017. – Vol. 18. – P. 1–9. – doi: 10.1016/j.cirpj.2016.11.004.
  3. Ephremenkov E.A., Kobza E.E., Efremenkova S.K. Force analysis of double pitch point cycloid drive with intermediate rolling elements and free retainer // Applied Mechanics and Materials. – 2015. – Vol. 756. – P. 29–34. – doi: 10.4028/ href='www.scientific.net/AMM.756.29' target='_blank'>www.scientific.net/AMM.756.29.
  4. Wear resistance investigation of titanium nitride-based coatings / Santecchia E., Hamouda A.M.S., Musharavati F. E. Zalnezhad, M. Cabibbo, S. Spigarelli // Ceramics International. – 2015. – Vol. 41, iss. 9. – P. 10349–10379. – doi: 10.1016/j.ceramint.2015.04.152.
  5. Corrosion resistance of CrN and CrCN/CrN coatings deposited using cathodic arc evaporation in Ringer's and Hank's solutions / A. Gilewicz, P. Chmielewska, D. Murzynski, E. Dobruchowska, B. Warcholinski // Surface and Coatings Technology. – 2016. – Vol. 299. – P. 7–14. – doi: 10.1016/j.surfcoat.2016.04.069.
  6. Corrosion protection of steel with multilayer coatings: improving the sealing properties of physical vapor deposition CrN coatings with Al2O3/TiO2 atomic layer deposition nanolaminates / J. Leppäniemi, P. Sippola, M. Broas, J. Aromaa, H. Lipsanen, J. Koskinen // Thin Solid Films. – 2017. – Vol. 627. – P. 59–68. – doi: https://doi.org/10.1016/j.tsf.2017.02.050.
  7. Yang Y.H., Wu F.B. Microstructure evolution and protective properties of TaN multilayer coatings // Surface and Coatings Technology. – 2006. – Vol. 308. – P. 108–114. – doi: 10.1016/j.surfcoat.2016.05.091.
  8. CrVN/TiN nanoscale multilayer coatings deposited by DC unbalanced magnetron sputtering / E. Contreras, Y. Galindez, M.A. Rodas, G. Bejarano, M.A. Gómez // Surface and Coatings Technology. – 2017. – Vol. 332. – P. 214–222. – doi: 10.1016/j.surfcoat.2017.07.086.
  9. Пузряков А.Ф. Теоретические основы плазменного напыления. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2008. – 360 с.
  10. Microstructural design and properties of supersonic suspension plasma sprayed thermal barrier coatings / W. Fan, Y. Bai, J.R. Li, Y. Gao, H.Y. Chen, Y.X. Kang, W.J. Shi, B.Q. Li // Journal of Alloys and Compounds. – 2017. – Vol. 699. – P. 763–774. – doi: 10.1016/j.jallcom.2016.12.356.
  11. Enhanced surface properties of aluminum by PVD-TiN coating combined with cathodic cage plasma nitriding / M.I. Bashir, M. Shafiq, M. Naeem, M. Zaka-ul-Islam, J.C. Díaz-Guillén, C.M. Lopez-Badilloe, M. Zakaullaha // Surface and Coatings Technology. – 2017. – Vol. 327. – P. 59–65. – doi: 10.1016/j.surfcoat.2017.08.015.
  12. Simulation of phase transformation kinetics in thin films under a constant nucleation rate / M. Moghadam, E. Pang, T. Philippe, P. Voorhees // Thin Solid Films. – 2016. – Vol. 612. – P. 437–444.
  13. Prediction of the properties of PVD/CVD coatings with the use of FEM analysis / A. Sliwa, J. Mikula, K. Golombek, T. Tanski, M. Bonek // Applied Surface Science. – 2016. – Vol. 388. – P. 281–287.
  14. Bogdanovich V.I., Giorbelidze M.G. Mathematical modelling of thin-film polymer heating during obtaining of nanostructured ion-plasma coatings // Procedia Engineering. – 2017. – Vol. 201. – P. 630–638. – doi: 10.1016/j.proeng.2017.09.677.
  15. Monte Carlo simulation of the PVD transport process for alloys / E. Lugscheider, K. Bobzin, N. Papenfu?-Janzen, D. Parkot // Surface and Coatings Technology. – 2005. – Vol. 200. – P. 913–915.
  16. Ali R., Sebastiani M., Bemporad E. Influence of Ti–TiN multilayer PVD-coatings design on residual stresses and adhesion // Materials & Design. – 2015. – Vol. 75. – P. 47–56.
  17. Experimental and modeling study on the role of Ar addition to the working gas on the development of intrinsic stress in TiN coatings produced by filtered vacuum-arc plasma / V.V. Vasyliev, A.I. Kalinichenko, E.N. Reshetnyak, G. Taghavi Pourian Azar, M. Ürgen, V.E. Strel'nitskij // Thin Solid Films. – 2017. – Vol. 642. – P. 207–213. – doi: 10.1016/j.tsf.2017.08.033.
  18. Knyazeva A.G., Shanin S.A. Modeling of evolution of growing coating composition // Acta Mechanica. – 2016. – Vol. 227, iss. 1. – P. 75–104. – doi: 10.1007/s0070.
  19. Физические величины: справочник / под ред. И.С. Григорьева, Е.З. Мейлихова. – М.: Энергоатомиздат, 1991. – 1232 с.
  20. Термодинамические свойства неорганических веществ: справочник / У.Д. Верятин, В.П. Маширев, Н.Г. Рябцев, В.И. Тарасов, Б.Д. Рогозкин, И.В. Коробов; под общ. ред. А.П. Зефирова. – М.: Атомиздат, 1965. – 460 с.
  21. Карапетьянц М.Х. Химическая термодинамика. – М.: Химия, 1975. – 584 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).