Modeling of the Thermal and Structural States of Hollow Cathode of Vacuum Plasmatron

Cover Page

Cite item

Full Text

Abstract

Introduction. Arc plasmatrons are widely used in various fields of science and technology. The resource of continuous work of electrodes determines the efficiency of plasmatron and is one of its most important technological characteristics. A theoretical and experimental study of physical and mechanical processes in cathode material is focused on increasing the duration of its running time and is a relevant objective. The purpose of the work is the creation of physical and mathematical models and numerical study of thermal and recrystallization processes occurring in the hollow cathode of a vacuum plasmatron under the influence of an electric arc. Experimental Technique. To study the temperature field of a cathode under the action of an electric arc, the Fourier differential equation with an internal heat source, Laplace equation for the electric potential, and Ohm's law equation were solved jointly. When the plasmatron is operating, new nuclei are formed and grow in the cathode. Three interrelated phenomena are most important for recrystallization: material heating, new grain nucleation and growth. The distribution of crystalline grain size over the cathode volume was calculated based on the temperature field data and activation model parameters of grain nucleation and growth for tungsten. The proposed mathematical models allow simulating the various modes of hollow cathode operation, evaluating the change in the structure of a material during its heating, and can be used to study and improve the performance characteristics of the hollow cathodes of vacuum plasmatrons. Results and Discussion. The obtained solutions showed that the high heating rates and rapid output to stationary mode characterize the cathode heating. It should be noted there is a sharp change in temperature along the cathode length in the area of the active zone (heating surface). The temperature distribution shows the considerable axial and radial temperature gradients, which can lead to large thermal stresses in the cathode. Calculation showed when the superheating over the temperature of recrystallization starts decreasing, the grain size increases. This is due to the fact that when the superheating grows, the nucleation rate outstrips the rate of grain growth, and the grain size decreases. For the investigated flux density values, the size of the primary recrystallized grain, average along the cathode length, is in the range of 3.7–14 μm. The time required to obtain a single-crystal wall of the hollow cathode due to collective and/or secondary recrystallization is 1–32 hours. As a result, complete recrystallization of the grain in the cross-section of tungsten cathode can occur in one cycle of plasmatron operation. This means that the electrophysical and thermal characteristics of the cathode change significantly during its operation. Also the grain size has a significant effect on the resistance to the destructive effects of thermal stresses.

About the authors

O. S. Dutova

Email: odutova@ngs.ru
Ph.D. (Physics and Mathematics), Kutateladze Institute of Thermophysic SB RAS, odutova@ngs.ru

A. V. Shishkin

Email: andrshi@itp.nsc.ru
Ph.D. (Chemical), Associate Professor, Kutateladze Institute of Thermophysic SB RAS, andrshi@itp.nsc.ru

V. S. Cherednichenko

Email: bm@skbterm.ru
D.Sc. (Engineering), Professor, Novosibirsk State Technical University, bm@skbterm.ru

References

  1. Генерация низкотемпературной плазмы и плазменные технологии: проблемы и перспективы / Г.Ю. Даутов, А.Н. Тимошевский, Б.А. Урюков и др.; отв. ред. В.М. Фомин, И.М. Засыпкин. – Новосибирск: Наука, 2004. – 464 с. – (Низкотемпературная плазма; т. 20).
  2. Плазменная безмазутная растопка котлов и стабилизация горения пылеугольного факела / М.Ф. Жуков, Е.И. Карпенко, В.С. Перегудов, В.Е. Мессерле. – Новосибирск: Наука, 1995. – 304 c.
  3. Peregudov V.S. Optimization of the process of plasma ignition of coal // High Temperature. – 2009. –Vol. 47, N 2. – P. 181–186. – doi: 10.1134/S0018151X09020059.
  4. Pulverized coal plasma gasification / R. Kalinenko, A. Kuznetsov, A. Levitsky, V. Messerle, Yu. Mirokhin, L. Polak, Z. Sakipov, A. Ustimenko // Plasma Chemistry and Plasma Processing. – 1993. – Vol. 13, N 1. – P. 141–167. – doi: 10.1007/BF01447176.
  5. Blackburn P.R. Ignition of pulverized coal with arc-heated air // Journal of Energy. – 1980. – Vol. 4, N 3. – P. 98–99. – doi: 10.2514/3.62464.
  6. Pulverized coal torch combustion in a furnace with plasma-coal system / V.E. Messerle, A.B. Ustimenko, A.S. Askarova, A.O. Nagibin // Thermophysics and Aeromechanics. – 2010. – Vol. 17, N 3. – P. 435–444. – doi: 10.1134/S0869864310030145.
  7. Demonstration plasma gasification/vitrification system for effective hazardous waste treatment / K. Moustakas, D. Fatta, S. Malamis, K. Haralambous, M. Loizidou // Journal of Hazardous Materials. – 2005. – Vol. 123, N 1–3. – P. 120–126. – doi: 10.1016/j.jhazmat.2005.03.038.
  8. Thermal plasma technology for the treatment of wastes: a critical review / E. Gomez, D. Amutha Rani, C.R. Cheeseman, D. Deegan, M. Wise, A.R. Boccaccini // Journal of Hazardous Materials. – 2009. – Vol. 161, iss. 2–3. – P. 614–626. – doi: 10.1016/j.jhazmat.2008.04.017.
  9. Плазмотермическая переработка твердых отходов / В.П. Лукашов, С.П. Ващенко, Г.И. Багрянцев, Х.С. Пак // Экология и промышленность России. – 2005. – № 11. – C. 4–9.
  10. Плазмотроны. Исследования. Проблемы / М.Ф. Жуков, А.Н. Тимошевский, С.П. Ващенко, И.М. Засыпкин, В.П. Лукашов, В.С. Перегудов, Б.И. Михайлов, Т.С. Мельникова, Б.А. Поздняков. – Новосибирск: Изд-во СО РАН, 1995. – 203 с.
  11. Delcroix J.L., Trindade A.R. Hollow cathode arcs // Advances in Electronics and Electron Physics. – 1974. – Vol. 35. – P. 87–190. – doi: 10.1016/S0065-2539(08)60281-4.
  12. Чередниченко В.С., Юдин Б.И. Вакуумные плазменные электропечи. – Новосибирск: Изд-во НГТУ, 2011. – 586 с. – (Современные электротехнологии; т. 10).
  13. Ferreira C.M., Delcroix J.L. Theory of the hollow cathode arcs // Journal of Applied Physics. – 1978. – Vol. 49, N 8. – P. 2380–2395. – doi: 10.1063/1.325126.
  14. Чередниченко В.С., Аньшаков А.С., Кузьмин М.Г. Плазменные электротехнологические установки. – Новосибирск: Изд-во НГТУ, 2005. – 508 с.
  15. Чередниченко В.С. Сильноточные вакуумные дуги с полым катодом. Тепловое поле катода // Известия СО АН СССР. Серия технических наук. – 1987. – № 7, вып. 2. – С. 91– 96.
  16. Чередниченко В.С., Галкин С.Г., Косинов В.А. Сильноточные дуги с полым катодом // Генерация потоков электродуговой плазмы. – Новосибирск: Ин-т теплофизики СО АН СССР, 1987. – С. 306–322.
  17. Highly ionized hollow cathode discharge / L.M. Lidsky, S.D. Rothleder, D.J. Rose, S. Yoshikawa, C. Michelson, R.J. Mackin // Journal of Applied Physics. – 1962. – Vol. 33, N 8. – P. 2490–2497. – doi: 10.1063/1.1729002.
  18. Гужков В.В., Козлов Н.П., Хвесюк В.И. Экспериментальное исследование баланса токов и энергии в полом катоде // IV Всесоюзная конференция по плазменным ускорителям и ионным инжекторам: тезисы докладов. – М.: ВНТИЦ, 1978. – С. 261–262.
  19. Чередниченко В.С., Косинов В.А. Дуговой разряд с полым катодом // Известия СО АН СССР. Серия технических наук. – 1980. – № 13, вып. 3. – C. 22–30.
  20. Еременко Г.П., Юдин Б.И., Чередниченко М.В. О взаимодействии плазмы с внутренней поверхностью полого катода вакуумного плазмотрона // Автоматизированные электротехнологические установки: cборник научных трудов. – Новосибирск: НЭТИ, 1991. – С. 29–34.
  21. Низкотемпературная плазма. Т. 11. Математическое моделирование катодных процессов / А.М. Зимин, И.П. Назаренко, И.Г. Паневин, В.И. Хвесюк. – Новосибирск: Наука, 1993. – 194 с.
  22. Самарский А.А. Введение в численные методы. – М.: Наука, 1982. – 288 с.
  23. Кондратьев Н.С., Трусов П.В. Механизмы образования зародышей рекристаллизации в металлах при термомеханической обработке // Вестник Пермского национального исследовательского политехнического университета. Механика. – 2016. – № 4. – С. 151–174.
  24. Савицкий Е.М., Поварова К.Б., Макаров П.В. Металловедение вольфрама. – М.: Металлургия, 1978. – 257 с.
  25. Засимчук Е.Э., Исайчев В.И. Кинетика первичной, вторичной и собирательной рекристаллизации в вольфрамовой проволоке // Металлофизика. – Киев: Наукова думка, 1970. – Вып. 31. – С. 56–60.
  26. Klopp W.D., Raffo P.L. Effects of purity and structure on recrystallization, grain growth, ductility, tensile, and creep properties of arc-melted tungsten. – Washington: National aeronautics and space administration, 1964. – 50 p. – (NASA technical note; NASA TN D-2503).
  27. Горелик С.С. Рекристаллизация металлов и сплавов. – М.: Наука, 1967. – 389 с.
  28. Низкотемпературная плазма. Т. 12. Плазмохимический синтез ультрадисперсных порошков и их применение для модифицирования металлов и сплавов / В.П. Сабуров, А.Н. Черепанов, М.Ф. Жуков, Г.В. Галевский, Г.Г. Крушенко, В.Т. Борисов. – Новосибирск: Наука, 1995. – 344 с.
  29. Самсонов Г.В. Свойства элементов. – М.: Металлургия, 1976. – 312 с.
  30. Self-diffusion in tungsten / J.N. Mundy, S.J. Rothman, N.Q. Lam, H.A. Hoff, L.J.  Nowicki // Physical Review B. – 1978. – Vol. 18, N 12. – P. 6566–6575. – doi: 10.1103/PhysRevB.18.6566.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».