Simulation of the stock removal in the contact zone during internal grinding of brittle non-metallic materials

Abstract

Introduction. Finishing operations, in particular, cylindrical grinding, essentially form the quality parameters of products, its performance characteristics and functional suitability. At the same time, the cost of grinding work increases significantly in comparison with grinding metals, reaching an average of 20 ... 28% of the total cost of manufacturing products. The selection of the optimal parameters of the technological system based on the process simulation can improve the reliability, productivity and economic efficiency. To describe the processing of brittle nonmetallic materials, empirical dependences are mainly used, and the existing analytical models do not take into account the stochastic nature of the grinding operation and the combination of microcutting and brittle chipping when removing particles of brittle nonmetallic material and wear of the surface of the grinding tool. Purpose of the work: simulation of stock removal in the contact zone during internal grinding of brittle non-metallic materials. The task is to study the features and patterns of change in the probability of material removal when the treated surface comes into contact with an abrasive tool. In the work, the theoretical and probabilistic models are obtained, allowing to reveal the patterns of material removal in the contact zone. The models make it possible to trace the regularities of the interaction of cutting and piercing grains on the surface of the workpiece and the process of removing the allowance in the contact zone due to a combination of the phenomena of microcutting and brittle chipping, considered as a random event. The research methods are mathematical and physical simulation using the basic provisions of the theory of probability, the laws of distribution of random variables, as well as the theory of cutting and the theory of a deformable solid. Results and discussion. Data are obtained that provide a clear illustration of the patterns of material removal along the contact zone at various levels. Analysis of the results obtained shows that the peripheral speed of the tool and the rotation speed of the workpiece, which are directly included in the equation for calculating the probability of material removal, significantly affect the rate of material removal. The cross feed also has a significant effect on stock removal. A qualitative picture of the change in the probability of material removal in the contact zone during grinding of holes in brittle nonmetallic materials is obtained. The obtained patterns of change in the probability of material removal when the machined surface is in contact with an abrasive tool and analytical dependences are valid for a wide range of grinding modes, tool characteristics and other technological factors.

About the authors

S. M. Bratan

Email: serg.bratan@gmail.com
D.Sc. (Engineering), Professor, Sevastopol State University, 33 Universitetskaya str., Sevastopol, 299053, Russian Federation, serg.bratan@gmail.com

S. I. Roshchupkin

Email: st.roshchupkin@yandex.ru
Ph.D. (Engineering), Associate Professor, Sevastopol State University, 33 Universitetskaya str., Sevastopol, 299053, Russian Federation, st.roshchupkin@yandex.ru

A. O. Kharchenko

Email: khao@list.ru
Ph.D. (Engineering), Professor, Sevastopol State University, 33 Universitetskaya str., Sevastopol, 299053, Russian Federation, khao@list.ru

A. S. Chasovitina

Email: nastya.chasovitina@mail.ru
Sevastopol State University, 33 Universitetskaya str., Sevastopol, 299053, Russian Federation, nastya.chasovitina@mail.ru

References

  1. Malkin S., Guo C. Grinding technology: theory and applications of machining with abrasives. – New York: Industrial Press, 2008. – 372 р. – ISBN 978-0-8311-3247-7.
  2. Hou Z.B., Komanduri R. On the mechanics of the grinding process. Pt. 1. Stochastic nature of the grinding process // International Journal of Machine Tools and Manufacture. – 2003. – Vol. 43. – P. 1579–1593. – doi: 10.1016/S0890-6955(03)00186-X.
  3. Lajmert P., Sikora V., Ostrowski D. A dynamic model of cylindrical plunge grinding process for chatter phenomena investigation // MATEC Web of Conferences. – 2018. – Vol. 148. – P. 09004–09008. – doi: 10.1051/matecconf/20181480900.
  4. A time-domain surface grinding model for dynamic simulation / M. Leonesio, P. Parenti, A. Cassinari, G. Bianchi, M. Monn // Procedia CIRP. – 2012. – Vol. 4. – P. 166–171. – doi: 10.1016/j.procir.2012.10.030.
  5. Sidorov D., Sazonov S., Revenko D. Building a dynamic model of the internal cylindrical grinding process // Procedia Engineering. – 2016. – Vol. 150. – P. 400–405. – doi: 10.1016/j.proeng.2016.06.739.
  6. Zhang N., Kirpitchenko I., Liu D.K. Dynamic model of the grinding process // Journal of Sound and Vibration. – 2005. – Vol. 280. – P. 425–432. – doi: 10.1016/j.jsv.2003.12.006.
  7. Estimation of dynamic grinding wheel wear in plunge grinding / M. Ahrens, J. Damm, M. Dagen, B. Denkena, T. Ortmaier // Procedia CIRP. – 2017. – Vol. 58. – P. 422–427. – doi: 10.1016/j.procir.2017.03.247.
  8. Garitaonandia I., Fernandes M.H., Albizuri J. Dynamic model of a centerless grinding machine based on an updated FE model // International Journal of Machine Tools and Manufacture. – 2008. – Vol. 48. – P. 832–840. – doi: 10.1016/j.ijmachtools.2007.12.001.
  9. Tawakolia T., Reinecke H., Vesali A. An experimental study on the dynamic behavior of grinding wheels in high efficiency deep grinding // Procedia CIRP. – 2012. – Vol. 1. – P. 382–387. – doi: 10.1016/j.procir.2012.04.068.
  10. Dynamic modeling and simulation of a nonlinear, non-autonomous grinding system considering spatially periodic waviness on workpiece surface / J. Jung, P. Kim, H. Kim, J. Seok // Simulation Modelling Practice and Theory. – 2015. – Vol. 57. – P. 88–99. – doi: 10.1016/j.simpat.2015.06.005.
  11. Yu H., Wang J., Lu Y. Modeling and analysis of dynamic cutting points density of the grinding wheel with an abrasive phyllotactic pattern // International Journal of Advanced Manufacturing Technology. – 2016. – Vol. 86. – P. 1933–1943. – doi: 10.1007/s00170-015-8262-0.
  12. Guo J. Surface roughness prediction by combining static and dynamic features in cylindrical traverse grinding // International Journal of Advanced Manufacturing Technology. – 2014. – Vol. 75. – P. 1245–1252. – doi: 10.1007/s00170-014-6189-5.
  13. A new approach for dynamic modelling of energy consumption in the grinding process using recurrent neural networks / A. Arriandiaga, E. Portillo, J.A. Sanchez, I. Cabanes, I. Pombo // Neural Computing and Applications. – 2016. – Vol. 27. – P. 1577–1592. – doi: 10.1007/s00521-015-1957-1.
  14. Soler Ya.I., Le N.V., Si M.D. Influence of rigidity of the hardened parts on forming the shape accuracy during flat grinding // MATEC Web of Conferences. – 2017. – Vol. 129. – P. 01076. – doi: 10.1051/matecconf/201712901076.
  15. Солер Я.И., Хоанг Н.А. Влияние глубины резания на высотные шероховатости инструментов из стали У10А при плоском шлифовании кругами из кубического нитрида бора // Авиамашиностроение и транспорт Сибири: сборник статей IX Всероссийской научно-практической конференции / Иркутский национальный исследовательский технический университет. – Иркутск, 2017. – С. 250–254.
  16. Calculation of surface roughness parameters for external cylindrical grinding / Yu. Novoselov, S. Bratan, V. Bogutsky, Yu. Gutsalenko // Fiabiltate si Durabilitate = Fiability and Durability. – 2013. – Suppl. 1. – P. 5–15.
  17. Новоселов Ю.К. Динамика формообразования поверхностей при абразивной обработке. – Севастополь: СевНТУ, 2012. – 304 с. – ISBN 978-617-612-051-3.
  18. Повышение качества деталей при шлифовании в условиях плавучих мастерских / С.М. Братан, Е.А. Владецкая, Д.О. Владецкий, А.О. Харченко. – М.: Вузовский учебник; Инфра-М, 2018. – 154 с. – ISBN 978-5-9558-0598-6.
  19. Лобанов Д.В., Янюшкин А.С., Архипов П.В. Напряженно-деформированное состояние твердосплавных режущих элементов при алмазном затачивании // Вектор науки Тольяттинского государственного университета. – 2015. – № 3-1 (33-1). – С. 85–91. – doi: 10.18323/2073-5073-2015-3-85-91.
  20. Kassen G., Werner G. Kinematische Kenngrößen des Schleifvorganges // Industrie-Anzeiger. – 1969. – N 87. – P. 91–95.
  21. Identification of removal parameters at combined grinding of conductive ceramic materials / S. Bratan, S. Roshchupkin, A. Kolesov, B. Bogutsky // MATEC Web of Conferences. – 2017. – Vol. 129. – P. 01079. doi: 10.1051/matecconf/201712901079.
  22. Гусев В.В., Моисеев Д.А. Износ алмазного шлифовального круга при обработке керамики // Прогрессивные технологии и системы машиностроения. – 2019. – № 4 (67). – С. 25–29.
  23. Novoselov Yu., Bratan S., Bogutsky B. Analysis of relation between grinding wheel wear and abrasive grains wear // Procedia Engineering. – 2016. – Vol. 150. – P. 809–814. – doi: 10.1016/j.proeng.2016.07.116.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).