Численный анализ процесса электронно-лучевой аддитивной наплавкис вертикальной подачей проволочного материала

Обложка

Цитировать

Полный текст

Аннотация

Введение. В настоящее время во всем мире активно развиваются аддитивные технологии, которые находят все более широкое применение в промышленном производстве. Применение электронного пучка в аддитивных процессах направленного ввода энергии, так называемых Directed Energy Deposition (DED) технологиях, имеет ряд преимуществ, основными среди которых являются гибкость управления пространственно-энергетическими характеристиками теплового источника и наличие вакуумной защитной среды. Стандартной схемой осуществления аддитивной электронно-лучевой наплавки является оплавление электронным пучком проволочного присадочного материала, подаваемого сбоку в зону воздействия электронного пучка, однако такая схема аддитивной электронно-лучевой наплавки не обеспечивает равномерность теплового воздействия в наплавляемой области. Наиболее эффективным вариантом при электронно-лучевой наплавке является вертикальная подача проволоки, обеспечивающая наиболее стабильное формирование ванны жидкого металла и соответственно наплавленных валиков. При этом до настоящего времени отсутствуют результаты численного анализа этого процесса с целью определения основных его закономерностей. Цель работы: проведение численных экспериментов для качественного анализа и определения закономерностей формирования наплавляемых валиков и переноса присадочного материала, зависимости геометрических характеристик получаемых валиков от влияния сил давления паров, направления и величины азимутального угла действия источников тепла. Методами исследования являлась серия численных экспериментов, при которых анализировались варианты процесса электронно-лучевой наплавки при расположении вектора скорости наплавки в плоскости действия электронных пучков, и перпендикулярно этой плоскости для определения основных закономерностей формирования наплавляемых валиков и переноса присадочного материала, зависимости геометрических характеристик получаемых валиков от влияния сил давления паров, направления действия источников тепла и азимутального угла действия источников тепла. Результаты и обсуждение. Установлено, что геометрические характеристики наплавляемых валиков существенно зависят от взаимного расположения вектора скорости наплавки относительно плоскости действия электронных пучков, а учет силы давления паров оказывает значительное влияние на результаты численного моделирования формирования ванны расплава и протекающих в ней гидродинамических процессов. При этом при расположении вектора скорости наплавки перпендикулярно плоскости действия электронных пучков наблюдается более равномерная геометрия наплавляемых валиков металла, а увеличение азимутального угла действия источников тепла повышает вероятность выплесков на периферию наплавляемого валика, что связано с ограничением движения расплава в продольном направлении силами давления паров.

Об авторах

Г. Л. Пермяков

Email: gleb.permyakov@yandex.ru
канд. техн. наук, Пермский национальный исследовательский политехнический университет, Комсомольский проспект, 29, г. Пермь, 614990, Россия, gleb.permyakov@yandex.ru

Р. П. Давлятшин

Email: romadavly@gmail.com
Пермский национальный исследовательский политехнический университет, Комсомольский проспект, 29, г. Пермь, 614990, Россия, romadavly@gmail.com

В. Я. Беленький

Email: vladimirbelenkij@yandex.ru
доктор техн. наук, Профессор, Пермский национальный исследовательский политехнический университет, Комсомольский проспект, 29, г. Пермь, 614990, Россия, vladimirbelenkij@yandex.ru

Д. Н. Трушников

Email: trdimitr@yandex.ru
доктор техн. наук, Пермский национальный исследовательский политехнический университет, Комсомольский проспект, 29, г. Пермь, 614990, Россия, trdimitr@yandex.ru

С. В. Варушкин

Email: stepan.varushkin@mail.ru
канд. техн. наук, Пермский национальный исследовательский политехнический университет, Комсомольский проспект, 29, г. Пермь, 614990, Россия, stepan.varushkin@mail.ru

Ш. Панг

Email: spang@mail.hust.edu.cn
канд. техн. наук, Профессор, Хуачжунский университет науки и технологии, район Хуншань, Луойу, 1037, г. Ухань, 430074, Китайская Народная республика, spang@mail.hust.edu.cn

Список литературы

  1. Taminger K.M., Hafley R.A. Electron beam freeform fabrication (EBF3) for cost effective near-net shape manufacturing. – Hampton, VA: National Aeronautics and Space Administration, Langley Research Center, 2006. – (NASA technical memorandum; NASA/TM-2006-214284URL). – URL: https://ntrs.nasa.gov/citations/20060009152 (accessed: 23.06.2022).
  2. Patent Application US 2016/0288244 A1. Electron beam layer manufacturing: № 5/180,665: filed 13.06.2016: publ. date 06.10.2016 / Scott Stecker. – 30 p.
  3. In-process thermal imaging of the electron beam freeform fabrication process / K.M. Taminger, C.S. Domack, J.N. Zalameda, B.L. Taminger, R.A. Hafley, E.R. Burke // Proceedings of SPIE – The International Society for Optical Engineering. – 2016. – Vol. 9861. – P. 986102. – doi: 10.1117/12.2222439.
  4. Fuchs J., Schneider C., Enzinger N. Wire-based additive manufacturing using an electron beam as heat source // Welding in the World. – 2018. – Vol. 62. – P. 267–275. – doi: 10.1007/s40194-017-0537-7.
  5. Особенности формирования изделий методом электронно-лучевой наплавки / А.В. Гуденко, А.П. Слива, В.К. Драгунов, А.В. Щербаков // Сварочное производство. – 2018. – № 8. – C. 12–19.
  6. Effect of surface treatments on electron beam freeform fabricated aluminum structures / K.M. Taminger, R.A. Hafley, D.T. Fahringer, R.E. Martin // 2004 International Solid Freeform Fabrication Symposium. – Austin, TX, 2004. – P. 460–470. – doi: 10.26153/tsw/7012.
  7. AWS C7.1M/C7.1:2013. Recommended practices for electron beam welding and allied processes / American Welding Society (AWS), Committee on High Energy Beam Welding and Cutting. – American Welding Society, 2013. – 150 p. – ISBN 0-87171-721-2.
  8. Bird R.K., Atherton T.S. Effect of orientation on tensile properties of Inconel 718 block fabricated with electron beam freeform fabrication (EBF3). – Hampton, VA: National Aeronautics and Space Administration, Langley Research Center, 2010. – (NASA technical memorandum; NASA/TM-2010-216719). – URL: https://ntrs.nasa.gov/citations/20100025706 (accessed: 23.06.2022).
  9. Microstructure and mechanical properties of electron beam deposits of AISI 316L stainless steel / L. Wang, S.D. Felicelli, J. Coleman, R. Johnson, K.M.B. Taminger, R.L. Lett // Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition. – Denver, Colorado, USA, 2011. – Vol. 3: Design and Manufacturing. – P. 15–21. – doi: 10.1115/IMECE2011-62445.
  10. Ivanchenko V.G., Ivasishin O.M., Semiatin S.L. Evaluation of evaporation losses during electron-beam melting of Ti-Al-V alloys // Metallurgical and Materials Transactions B. – 2003. – Vol. 34 (6). – P. 911–915. – doi: 10.1007/s11663-003-0097-7.
  11. Research on modeling of heat source for electron beam welding fusion-solidification zone / Y. Wang, P. Fu, Y. Guan, Z. Lu, Y. Wei // Chinese Journal of Aeronautics. – 2013. – Vol. 26 (1). – P. 217–223. – doi: 10.1016/j.cja.2012.12.023.
  12. Chowdhury S., Nirsanametla Y., Muralidhar M. Studies on heat transfer analysis of Ti2AlNb electron beam welds using hybrid volumetric heat source // Proceedings of the International Congress 2017 of the International Institute of Welding, 07–09 December 2017. – Chennai, India, 2017.
  13. Modelling of heat and mass transfer for wire-based additive manufacturing using electric arc and concentrated sources of energy / D. Trushnikov, A. Perminov, V. Belenkiy, G. Permyakov, M. Kartashov, E. Matveev, A. Dushina, Y. Schitsyn, S. Pang, K.P. Karunakaran // International Journal of Engineering and Technology. – 2018. – Vol. 7, N 4.38. – P. 741–747. – doi: 10.14419/ijet.v7i4.38.25777.
  14. Mladenov G.M., Koleva E.G., Trushnikov D.N. Mathematical modelling for energy beam additive manufacturing // Journal of Physics: Conference Series. – 2018. – Vol. 1089. – Art. 012001. – doi: 10.1088/1742-6596/1089/1/012001.
  15. Разработка и совершенствование технологий и оборудования для электронно-лучевого выращивания изделий / Д.Н. Трушников, Г.Л. Пермяков, С.В. Варушкин, Р.П. Давлятшин, Ю.В. Баяндин, Ш. Панг // СТИН. – 2021. – № 6. – С. 38–40.
  16. Brackbill J., Kothe D. Dynamic modeling of the surface tension // Proceedings of the Third Microgravity Fluid Physics Conference. – Cleveland, OH: NASA Lewis Research Center, 1996. – P. 693–698.
  17. Anisimov S.I., Khokhlov V.A. Instabilities in laser-matter interaction. – Boca Raton, FL: CRC Press, 1995. – 141 p. – ISBN 0-8493-8660-8.
  18. Weld pool flows during initial stages of keyhole formation in laser welding / J.-H. Cho, D.F. Farson, J.O. Milewski, K.J. Hollis // Journal of Physics D: Applied Physics. – 2009. – Vol. 42, N 17. – doi: 10.1088/0022-3727/42/17/175502.
  19. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter and denudation zones / S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King // Acta Materialia. – 2016. – Vol. 108 (16). – P. 36–45. – doi: 10.1016/j.actamat.2016.02.014.
  20. Fundamental analysis of the influence of powder characteristics in Selective Laser Melting of molybdenum based on a multi-physical simulation model / K.-H. Leitz, C. Grohs, P. Singer, B. Tabernig, A. Plankensteiner, H. Kestler, L.S. Sigl // International Journal of Refractory Metals and Hard Materials. – 2018. – Vol. 72. – P. 1–8. – doi: 10.1016/j.ijrmhm.2017.11.034.
  21. Страхова Е.А., Ерофеев В.А., Судник В.А. Физико-математическое моделирование процесса широкослойной наплавки с поперечными колебаниями плазмотрона // Сварка и диагностика. – 2009. – № 3. – С. 32–38.
  22. Semak V., Matsunawa A. The role of recoil pressure in energy balance during laser materials processing // Journal of Physics D: Applied Physics. – 1997. – Vol. 30, N 18. – P. 2541–2552.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).