Evaluation of vacancy formation energy for BCC-, FCC-, and HCP-metals using density functional theory

Abstract

Introduction. Vacancies are among the crystal lattice defects that have a significant effect on the structural transformations processes during thermal, chemical-thermal, thermomechanical, and other types of alloys treatment. The vacancy formation energy is one of the most important parameters used to describe diffusion processes. An effective approach to its definition is based on the use of the density functional theory (DFT). The main advantage of this method is to carry out computations without any parameters defined empirically. The purpose of the work is to estimate vacancy formation energy of BCC-, FCC- and HCP-metals widely used in mechanical engineering and to compare these findings obtained using various exchange-correlation functionals (GGA and meta-GGA). Computation procedure. The computations were carried out using the projector-augmented wave method using the GPAW code and the atomic simulation environment (ASE). The Perdew-Burke-Ernzerhof, MGGAC and rMGGAC functionals were used. The wave functions were described by plane waves within simulations. Vacancies formation energy was evaluated using supercells approach with a size 3 × 3 × 3. Computations were carried out for BCC-metals (Li, Na, K, V, Cr, Fe, Rb, Nb, Mo, Cs, Ta, W), FCC-metals (Al, Ni, Cu, Rh, Pd, Ag, Ir, Pt, Au, Pb, Co) and HCP-metals (Be, Ti, Zr, Mg, Sc, Zn, Y, Ru, Cd, Hf, Os, Co, Re). Results and discussion. A comparison of the defined vacancy formation energies indicates the validity of the following ratio of values: . The values obtained using the open source GPAW code are characterized by the same patterns as for widely spread commercially distributed program VASP. It was revealed that the use of the PBE and MGGAC functionals leads to a slight deviation relative to the experimentally determined vacancies formation energy in contrast to the computations using rMGGAC.

About the authors

Y. Yu. Emurlaeva

Email: emurlaeva@corp.nstu.ru
Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, emurlaeva@corp.nstu.ru

D. V. Lazurenko

Email: pavlyukova_87@mail.ru
D.Sc. (Engineering), Associate Professor, Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, pavlyukova_87@mail.ru

Z. B. Bataeva

Email: bataevazb@ngs.ru
Ph.D. (Engineering), Associate Professor, Siberian State University of water transport, 33 Schetinkina str., Novosibirsk, 630099, Russian Federation, bataevazb@ngs.ru

I. Yu. Petrov

Email: ivan77766600@outlook.com
Novosibirsk State University, 1 Pirogova str., Novosibirsk, 630090, Russian Federation, ivan77766600@outlook.com

G. D. Dovzhenko

Email: g.dovjenko@skif.ru
Siberian Circular Photon Source “SKlF” Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences (SRF “SKIF”), 1 Nikol’skii pr., Kol’tsovo, 630559, Russian Federation, g.dovjenko@skif.ru

L. D. Makogon

Email: ledimakagon@mail.ru
Siberian State University of water transport, 33 Schetinkina str., Novosibirsk, 630099, Russian Federation, ledimakagon@mail.ru

M. N. Khomyakov

Email: mnkhomy@gmail.com
Institute of Laser Physics of Siberian Branch of the Russian Academy of Sciences, 15B Prospekt Ak. Lavrentieva, Novosibirsk, 630090, Russian Federation, mnkhomy@gmail.com

K. I. Emurlaev

Email: emurlaev@corp.nstu.ru
Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, emurlaev@corp.nstu.ru

I. A. Bataev

Email: i.bataev@corp.nstu.ru
D.Sc. (Engineering), Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, i.bataev@corp.nstu.ru

References

  1. Горелик С.С., Добаткин С.В., Капуткина Л.М. Рекристаллизация металлов и сплавов. – 3-е изд. – М.: МИСиС, 2005. – 432 с. – ISBN 5-87623-103-7.
  2. Humphreys F.J., Hatherly M. Recrystallization and related annealing phenomena. – 2nd ed. – Elsevier, 2004. – 605 p. – doi: 10.1016/B978-0-08-044164-1.X5000-2.
  3. Siegel R.W. Vacancy concentrations in metals // Journal of Nuclear Materials. – 1978. – Vol. 69–70. – P. 117–146. – doi: 10.1016/0022-3115(78)90240-4.
  4. Mehrer H. Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes. – Springer, 2007. – 673 p. – doi: 10.1007/978-3-540-71488-0.
  5. Smigelskas A.D., Kirkendall E.O. Zinc diffusion in alpha brass // Transactions of AIME. – 1947. – Vol. 171. – P. 130–142.
  6. Thermodynamics, diffusion and the Kirkendall effect in solids / A. Paul, T. Laurila, V. Vuorinen, S. Divinski. – Springer, 2014. – 530 p. – doi: 10.1007/978-3-319-07461-0.
  7. Kraftmakher Y. Equilibrium vacancies and thermophysical properties of metals // Physics Reports. – 1998. – Vol. 299, iss. 2–3. – P. 79–188. – doi: 10.1016/s0370-1573(97)00082-3.
  8. Vacancy formation energies in metals: A comparison of MetaGGA with LDA and GGA exchange–correlation functionals / B. Medasani, M. Haranczyk, A. Canning, M. Asta // Computational Materials Science. – 2015. – Vol. 101. – P. 96–107. – doi: 10.1016/j.commatsci.2015.01.018.
  9. Temperature dependence of the Gibbs energy of vacancy formation of fcc Ni / Y. Gong, B. Grabowski, A. Glensk, F. Körmann, J. Neugebauer, R.C. Reed // Physical Review B. – 2018. – Vol. 97. – P. 214106. – doi: 10.1103/physrevb.97.214106.
  10. Stabilization of Ti5Al11 at room temperature in ternary Ti-Al-Me (Me = Au, Pd, Mn, Pt) systems / D.V. Lazurenko, G.D. Dovzhenko, V.V. Lozanov, I.Y. Petrov, T.S. Ogneva, K.I. Emurlaev, I.A. Bataev // Journal of Alloys and Compounds. – 2023. – Vol. 944. – P. 169244. – doi: 10.1016/j.jallcom.2023.169244.
  11. First-principles calculations for point defects in solids / C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, C.G. Van de Walle // Reviews of Modern Physics. – 2014. – Vol. 86, iss. 1. – P. 253–305. – doi: 10.1103/revmodphys.86.253.
  12. Calculating free energies of point defects from ab initio / X. Zhang, B. Grabowski, T. Hickel, J. Neugebauer // Computational Materials Science. – 2018. – Vol. 148. – P. 249–259. – doi: 10.1016/j.commatsci.2018.
  13. Giustino F. Materials modelling using density functional theory: properties and predictions. – Oxford University Press, 2014. – 286 p.
  14. Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects // Physical Review. – 1965. – Vol. 140, iss. 4A. – P. A1133–A1138. – doi: 10.1103/PhysRev.140.A1133.
  15. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation / J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais // Physical Review B. – 1992. – Vol. 46, iss. 11. – P. 6671–6687. – doi: 10.1103/PhysRevB.46.6671.
  16. Application of generalized gradient approximations: The diamond–β-tin phase transition in Si and Ge / N. Moll, M. Bockstedte, M. Fuchs, E. Pehlke, M. Scheffler // Physical Review B. – 1995. – Vol. 52, iss. 4. – P. 2550–2556. – doi: 10.1103/PhysRevB.52.2550.
  17. Efficacy of surface error corrections to density functional theory calculations of vacancy formation energy in transition metals / P.K. Nandi, M.C. Valsakumar, Sh. Chandra, H.K. Sahu, C.S. Sundar // Journal of Physics: Condensed Matter. – 2010. – Vol. 22. – P. 345501. – doi: 10.1088/0953-8984/22/34/345501.
  18. Density functional study of vacancies and surfaces in metals / L. Delczeg, E.K. Delczeg-Czirjak, B. Johansson, L. Vitos // Journal of Physics: Condensed Matter. – 2011. – Vol. 23. – P. 045006. – doi: 10.1088/0953-8984/23/4/045006.
  19. Mortensen J.J., Hansen L.B., Jacobsen K.W. Real-space grid implementation of the projector augmented wave method // Physical Review B. – 2005. – Vol. 71, iss. 3. – P. 035109. – doi: 10.1103/PhysRevB.71.035109.
  20. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method / J. Enkovaara, C. Rostgaard, J.J. Mortensen et al. // Journal of Physics: Condensed Matter. – 2010. – Vol. 22. – P. 243202. – doi: 10.1088/0953-8984/22/25/253202.
  21. The atomic simulation environment – A Python library for working with atoms / J. Enkovaara, C. Rostgaard, J.J. Mortensen et al. // Journal of Physics: Condensed Matter. – 2017. – Vol. 29, iss. 27. – P. 273002. – doi: 10.1088/1361-648X/aa680e.
  22. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple // Physical Review Letters. – 1996. – Vol. 77, iss. 18. – P. 3865–3868. – doi: 10.1103/PhysRevLett.77.3865.
  23. Relevance of the Pauli kinetic energy density for semilocal functionals / B. Patra, S. Jana, L.A. Constantin, P. Samal // Physical Review B. – 2019. – Vol. 100. – P. 155140. – doi: 10.1103/PhysRevB.100.155140.
  24. Improving the applicability of the Pauli kinetic energy density based semilocal functional for solids / S. Jana, S.K. Behera, S. Smiga, L.A. Constantin, P. Samal // New Journal of Physics. – 2021. – Vol. 23. – P. 063007. – doi: 10.1088/1367-2630/abfd4d.
  25. Thermal contraction and disordering of the Al(110) surface / N. Marzari, D. Vanderbilt, A. De Vita, M.C. Payne // Physical Review Letters. – 1999. – Vol. 82, iss. 16. – P. 3296–3299. – doi: 10.1103/PhysRevLett.82.3296.
  26. Emery A.A., Wolverton C. High-throughput DFT calculations of formation energy, stability and oxygen vacancy formation energy of ABO3 perovskites // Scientific Data. – 2017. – Vol. 4. – P. 170153. – doi: 10.1038/sdata.2017.153.
  27. Hayashiuchi Y., Hagihara T., Okada T. A new interpretation of proportionality between vacancy formation energy and melting point // Physica B+C. – 1982. – Vol. 115, iss. 1. – P. 67–71. – doi: 10.1016/0378-4363(82)90056-0.
  28. Franklin A.D. Statistical thermodynamics of point defects in crystals // Point Defects in Solids. – Boston, MA: Springer, 1972. – P. 1–101. – doi: 10.1007/978-1-4684-2970-1_1.
  29. Doyama M., Koehler J.S. The relation between the formation energy of a vacancy and the nearest neighbor interactions in pure metals and liquid metals // Acta Metallurgica. – 1976. – Vol. 24, iss. 9. – P. 871–879. – doi: 10.1016/0001-6160(76)90055-9.
  30. Mattsson T.R., Mattsson A.E. Calculating the vacancy formation energy in metals: Pt, Pd, and Mo // Physical Review B. – 2002. – Vol. 66. – P. 214110. – doi: 10.1103/PhysRevB.66.214110.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).