Effect of cold radial forging on structure, texture and mechanical properties of lightweight austenitic steel

Abstract

Introduction. Lightweight austenitic steels, exhibiting high mechanical properties combined with cost-effective alloying and low density, are promising materials for automotive and airspace industries. The purpose of this work is to study the evolution of the structure and properties of Fe-21Mn-6Al-1C lightweight austenitic steel after cold radial forging (CRF) under various modes. Methods. Microstructural studies were performed using transmission and scanning electron microscopy (TEM) on JEOL JEM-2100 and FEI Nova NanoSEM 450 microscopes, respectively. Microhardness was determined in the cross-section using a Wolpert 402MVD microhardness tester with a load of 200 g and a dwell time of 15 s. Uniaxial tension testing of samples cut from the edge and center was performed on an Instron 5882 machine at room temperature and a strain rate of 1×10-3 s−1. Results and discussion. The stages of structure formation were determined: after deformation (ε) of up to 20%, the formation of deformation microbands in the center and parallel deformation microbands at the rod edge takes place; after ε = 40–60%, the formation of single mechanical twins in the center and packets of twins/lamellas at the edge occurs; after ε = 80%, the intensive twinning in the center and formation of a fragmented structure at the edge takes place. Increasing the degree of CRF leads to the development of a sharp two-component axial texture <111>// rod axis (RA) and <100>//RA in the center, which is blurred towards the edge. At the edge of the rod, a shear texture B/B? is observed after CRF with ε = 40% and higher. After CRF with ε = 20%, the material in the center of the rod exhibits higher strength and hardness and lower ductility compared to the edge. Further CRF is accompanied by a change in this strength/hardness and ductility ratio between the center and the edge of the rod to the opposite. Thus, CRF is a promising method for producing industrial blanks from lightweight austenitic steels.

About the authors

D. O. Panov

Email: dimmak-panov@mail.ru
Ph.D. (Engineering), Associate Professor, Belgorod National Research University, 85 Pobedy Str., Belgorod, 308015, Russian Federation, dimmak-panov@mail.ru

R. S. Chernichenko

Email: rus.chernichenko@mail.ru
Belgorod National Research University, 85 Pobedy Str., Belgorod, 308015, Russian Federation, rus.chernichenko@mail.ru

S. V. Naumov

Email: NaumovStanislav@yandex.ru
Ph.D. (Engineering), Belgorod National Research University, 85 Pobedy Str., Belgorod, 308015, Russian Federation, NaumovStanislav@yandex.ru

E. A. Kudryavtsev

Email: kudryavtsev@bsuedu.ru
Ph.D. (Engineering), Belgorod National Research University, 85 Pobedy Str., Belgorod, 308015, Russian Federation, kudryavtsev@bsuedu.ru

G. A. Salishchev

Email: salishchev_g@bsuedu.ru
D.Sc. (Engineering), Professor, Belgorod National Research University, 85 Pobedy Str., Belgorod, 308015, Russian Federation, salishchev_g@bsuedu.ru

A. S. Pertsev

Email: Perets_87@mail.ru
Ph.D. (Engineering), Department Chief Metallurgist, Perm Scientific-Research Technological Institute, 41 Geroev Khasana Str., Perm, 614990, Russian Federation , Perets_87@mail.ru

References

  1. Current state of Fe-Mn-Al-C low density steels / S. Chen, R. Rana, A. Haldar, R.K. Ray // Progress in Materials Science. - 2017. - Vol. 89. - P. 345–391. - doi: 10.1016/j.pmatsci.2017.05.002.
  2. Alloy design, combinatorial synthesis, and microstructure – property relations for low-density Fe-Mn-Al-C austenitic steels / D. Raabe, H. Springer, I. Gutierrez-Urrutia, F. Roters, M. Bausch, J.B. Seol, M. Koyama, P.P. Choi, K. Tsuzaki // Jom. - 2014. - Vol. 66. - P. 1845–1856. - doi: 10.1007/s11837-014-1032-x.
  3. Austenite-based Fe-Mn-Al-C lightweight steels: research and prospective / H. Ding, D. Liu, M. Cai, Y. Zhang // Metals. - 2022. - Vol. 12 (10). – P. 1572. - doi: 10.3390/met12101572.
  4. Fe–Al–Mn–C lightweight structural alloys: a review on the microstructures and mechanical properties / H. Kim, D. Suh, N.J. Kim, H. Kim, D. Suh, N.J. Kim // Science and Technology of Advanced Materials. - 2013. - Vol. 14 (1). - P. 014205. - doi: 10.1088/1468-6996/14/1/014205.
  5. Yoo J.D., Hwang S.W., Park K.T. Origin of extended tensile ductility of a Fe-28Mn-10Al-1C steel // Metallurgical and Materials Transactions: A. - 2009. - Vol. 40 (7). - P. 1520–1523. - doi: 10.1007/s11661-009-9862-9.
  6. Investigations of the microstructure evolution and tensile deformation behavior of austenitic Fe-Mn-Al-C lightweight steels and the effect of Mo addition / J. Moon, S.J. Park, J.H. Jang, T.H. Lee, C.H. Lee, H.U. Hong, H.N. Han, J. Lee, B.H. Lee, C. Lee // Acta Materialia. - 2018. - Vol. 147. - P. 226–235. - doi: 10.1016/j.actamat.2018.01.051.
  7. Precipitation behavior of κ-carbides and its relationship with mechanical properties of Fe–Mn–Al–C lightweight austenitic steel / P. Chen, F. Zhang, Q.C. Zhang, J.H. Du, F. Shi, X.W. Li // Journal of Materials Research and Technology. - 2023. - Vol. 25 (12) - P. 3780–3788. - doi: 10.1016/j.jmrt.2023.06.212.
  8. Aluminum-alloyed lightweight stainless steels strengthened by B2-(Ni,Fe)Al precipitates / M. Harwarth, G. Chen, R. Rahimi, H. Biermann, A. Zargaran, M. Duffy, M. Zupan, J. Mola // Materials & Design. - 2021. - Vol. 206. - P. 109813. - doi: 10.1016/j.matdes.2021.109813.
  9. Atomistic study of nano-sized κ-carbide formation and its interaction with dislocations in a cast Si added FeMnAlC lightweight steel / C.W. Kim, S.I. Kwon, B.H. Lee, J.O. Moon, S.J. Park, J.H. Lee, H.U. Hong // Materials Science and Engineering: A. - 2016. - Vol. 673. - P. 108–113. - doi: 10.1016/j.msea.2016.07.029.
  10. Microstructure and mechanical properties of an Fe–Mn–Al–C lightweight steel after dynamic plastic deformation processing and subsequent aging / Z. Li, Y.C. Wang, X. Cheng, C. Gao, Z. Li, T.G. Langdon // Materials Science and Engineering: A. - 2022. - Vol. 833. - P. 142566. - doi: 10.1016/j.msea.2021.142566.
  11. Rahnama A., Kotadia H., Sridhar S. Effect of Ni alloying on the microstructural evolution and mechanical properties of two duplex light-weight steels during different annealing temperatures: experiment and phase-field simulation // Acta Materialia. - 2017. - Vol. 132 (6). - P. 627–643. - doi: 10.1016/j.actamat.2017.03.043.
  12. Ultrahigh strength in lightweight steel via avalanche multiplication of intermetallic phases and dislocation / S. Xiang, X. Liu, R. Xu, F. Yin, G.J. Cheng // Acta Materialia. - 2023. - Vol. 242. - P. 118436. - doi: 10.1016/j.actamat.2022.118436.
  13. Influence of microstructure evolution on hot ductility behavior of austenitic Fe–Mn–Al–C lightweight steels during hot tensile deformation / J. Moon, S.J. Park, C.H. Lee, H.U. Hong, B.H. Lee, S.D. Kim // Materials Science and Engineering: A. - 2023. - Vol. 868 - P. 144786. - doi: 10.1016/j.msea.2023.144786.
  14. Mao Q., Liu Y., Zhao Y. A review on mechanical properties and microstructure of ultrafine grained metals and alloys processed by rotary swaging // Journal of Alloys and Compounds. - 2022. - Vol. 896. - P. 163122. - doi: 10.1016/j.jallcom.2021.163122.
  15. Affecting structure characteristics of rotary swaged tungsten heavy alloy via variable deformation temperature / A. Machácková, L. Krátká, R. Petrmichl, L. Kuncická, R. Kocich // Materials. - 2019. - Vol. 12 (24). - P. 4200. - doi: 10.3390/ma12244200.
  16. Effect of cold swaging on the bulk gradient structure formation and mechanical properties of a 316-type austenitic stainless steel / D. Panov, R. Chernichenko, E. Kudryavtsev, D. Klimenko, S. Naumov, A. Pertcev // Materials. - 2022. - Vol. 15 (7). - P. 2468. - doi: 10.3390/ma15072468.
  17. Gradient microstructure and texture formation in a metastable austenitic stainless steel during cold rotary swaging / D. Panov, E. Kudryavtsev, S. Naumov, D. Klimenko, R. Chernichenko, V. Mirontsov, N. Stepanov, S. Zherebtsov, G. Salishchev, A. Pertcev // Materials. - 2023. - Vol. 16 (4). - P. 1–16. - doi: 10.3390/ma16041706.
  18. Excellent strength-ductility combination of interstitial non-equiatomic middle-entropy alloy subjected to cold rotary swaging and post-deformation annealing / D.O. Panov, E.A. Kudryavtsev, R.S. Chernichenko, S.V. Naumov, D.N. Klimenko, N.D. Stepanov, S.V. Zherebtsov, G.A. Salishchev, V.V. Sanin, A.S. Pertsev // Materials Science and Engineering: A. - 2024. - Vol. 898. - P. 146121. - doi: 10.1016/j.msea.2024.146121.
  19. Fonda R.W., Knipling K.E. Texture development in friction stir welds // Science and Technology of Welding & Joining. - 2011. - Vol. 16 (4). - P. 288–294. - doi: 10.1179/1362171811Y.0000000010.
  20. Suwas S., Ray R.K. Crystallographic texture of materials. – London: Springer, 2014. – 265 p. – ISBN 978-1-4471-6313-8. – doi: 10.1007/978-1-4471-6314-5.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).