Investigation of vegetable-based hybrid nanofluids on machining performance in MQL turning

Cover Page

Cite item

Full Text

Abstract

Introduction. Vegetable-based hybrid nanofluids are increasingly important in the context of Minimum Quantity Lubrication (MQL) turning due to its enhanced lubrication properties and environmental benefits. These nanofluids, which typically combine vegetable oils with nanoparticles like graphite or titanium dioxide, improve machining performance by reducing friction and cutting forces, leading to better surface finish and tool life. The purpose of the work. Coated carbide tools are widely used for machining SS 304 stainless steel due to its wear resistance and high temperature resistance. The purpose of the current work is to evaluate the machining performance of SS 304 steel under different concentrations of hybrid nanofluids. The methods of investigation. In this study, an attempt was made to use copper oxide/aluminum oxide (CuO/Al2O3) hybrid nanoparticles mixed with corn oil. A total of six hybrid cutting fluids with 100 ml volume and different mass concentration (0.4 %, 0.8 %, 1.2 %, 1.6 %, 2 %, and 2.4 %) were developed and its performance on SS 304 steel was investigated. Results and discussion. The finding revealed that with an increase in the mass concentration, the thermophysical properties improve. In addition, it is shown that friction decreases with an increase in the particle concentration to 1.6 wt. %. At a concentration of 1.6 wt. % of CuO/Al2O3 hybrid cutting nanofluid showed the best performance characteristics. This study also provides a comparison with dry turning. The highest tool wear was observed in dry turning, followed by turning using corn oil. A 32 % reduction in cutting force is observed. The surface roughness when using CuO/Al2O3 hybrid cutting nanofluid is reduced by 27.7 %. However, when using a hybrid nanofluid (2.4 % of CuO/Al2O3), low tool wear is observed. In this study, the possibility of using vegetable-based hybrid nanofluids for metal turning with a minimum amount of lubricant is considered.

About the authors

M. J. Eswara

Email: manijem66@gmail.com
ORCID iD: 0000-0002-0881-4899
Ph.D. (Engineering), Assistant Professor, Shri Vishnu Engineering College for Women, manijem66@gmail.com

N. Ambhore

Email: nitin.ambhore@viit.ac.in
ORCID iD: 0000-0001-8468-8057
Doctor of Philosophy, Department of Mechanical Engineering, Vishwakarma Institute of Technology, SPPU, Maharashtra, Pune 411037, India, nitin.ambhore@viit.ac.in

S. Shamkuwar

Email: sonal.shamkuwar@viit.ac.in
ORCID iD: 0000-0001-7633-0813
Doctor of Philosophy, Associate Professor, Department of Mechanical Engineering, Vishwakarma Institute of Information Technology, SPPU, Maharashtra, Pune 411048, India, sonal.shamkuwar@viit.ac.in

N. K. Gurajala

Email: naveenkumargurrijala84@gmail.com
ORCID iD: 0000-0003-0829-7622
Doctor of Philosophy, Associate Professor, Department of Mechanical Engineering, CMR College of Engineering and Technology, Hyderabad, Telangana, 501401, India, naveenkumargurrijala84@gmail.com

S. R. Dakarapu

Email: dsantharao@gmail.com
ORCID iD: 0000-0001-7679-7448
Doctor of Philosophy, Professor, Department of Mechanical Engineering, Visakha Institute of Engineering and Technology, Narava, Visakhapatnam, 530027, India, dsantharao@gmail.com

References

  1. Performance investigations for sustainability assessment of Hastelloy C-276 under different machining environments / G. Singh, V. Aggarwal, S. Singh, B. Singh, S. Sharma, J. Singh, C. Li, G. Królczyk, A. Kumar, S.M. Eldin // Heliyon. – 2023. – Vol. 9 (3). – doi: 10.1016/j.heliyon.2023.e13933.
  2. Bedi S.S., Behera G.C., Datta S. Effects of cutting speed on MQL machining performance of AISI 304 stainless steel using uncoated carbide insert: application potential of coconut oil and rice bran oil as cutting fluids // Arabian Journal for Science and Engineering. – 2020. – Vol. 45. – P. 8877–8893. – doi: 10.1007/s13369-020-04554-y.
  3. Machining performance on SS304 using nontoxic, biodegradable vegetable-based cutting fluids / J.E. Eswara, B.N. Raju, C. Prasad, B.S.S.P. Sankar // Chemical Data Collections. – 2022. – Vol. 42. – doi: 10.1016/j.cdc.2022.100961.
  4. Ambhore N., Kamble D., Agrawal D. Experimental investigation of induced tool vibration in turning of hardened AISI52100 steel // Journal of Vibration Engineering & Technologies. – 2022. – Vol. 10. – P. 1679–1689. – doi: 10.1007/s42417-022-00473-4.
  5. Roles of new bio-based nanolubricants towards eco-friendly and improved machinability of Inconel 718 alloys / M.A.M. Ali, A.I. Azmi, M.N. Murad, M.Z.M. Zain, A.N.M. Khalil, N.A. Shuaib // Tribology International. – 2020. – Vol. 144. – doi: 10.1016/j.triboint.2019.106106.
  6. Singh G., Aggarwal V., Singh S. Critical review on ecological, economical and technological aspects of minimum quantity lubrication towards sustainable machining // Journal of Cleaner Production. – 2020. – Vol. 271. – doi: 10.1016/j.jclepro.2020.122185.
  7. Kumar M.S., Krishna V.M. An investigation on turning AISI 1018 steel with hybrid biodegradeable nanofluid/MQL incorporated with combinations of CuO-Al2O3 nanoparticles // Materails Today: Proceedings. – 2020. – Vol. 24. – P. 1577–1584. – doi: 10.1016/j.matpr.2020.04.478.
  8. Zhang S., Li J.F., Wang Y.W. Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions // Journal of Cleaner Production. – 2012. – Vol. 32. – P. 81–87. – doi: 10.1016/j.jclepro.2012.03.014.
  9. Rajaguru J., Arunachalam N. A comprehensive investigation on the effect of flood and MQL coolant on the machinability and stress corrosion cracking of super duplex stainless steel // Journal of Materials Processing Technology. – 2019. – Vol. 276. – doi: 10.1016/j.jmatprotec.2019.116417.
  10. Tefera A.G., Sinha D.K., Gupta G. Experimental investigation and optimization of cutting parameters during dry turning process of copper alloy // Journal of Engineering and Applied Science. – 2023. – Vol. 70 (1). – P. 145. – doi: 10.1186/s44147-023-00314-5.
  11. Nune M.M.R., Chaganti P.K. Development, characterization, and evaluation of novel eco-friendly metal working fluid // Measurement. – 2019. – Vol. 137. – P. 401–416. – doi: 10.1016/j.measurement.2019.01.066.
  12. Optimizing sustainable machining processes: a comparative study of multi-objective optimization techniques for minimum quantity lubrication with natural material derivatives in turning SS304 / J.E. Manikanta, B.N. Raju, N. Ambhore, S. Santosh // International Journal on Interactive Design and Manufacturing. – 2024. – Vol. 18 (2). – P. 789–800. – doi: 10.1007/s12008-023-01706-w.
  13. Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: an experimental and theoretical investigation / A. Asadi, M. Asadi, A. Rezaniakolaei, L.A. Rosendahl, M. Afrand, S. Wongwises // International Journal of Heat and Mass Transfer. – 2017. – Vol. 117. – P. 474–486. – doi: 10.1016/j.ijheatmasstransfer.2017.10.036.
  14. Surface integrity optimization of high speed dry milling UD-CF/PEEK based on specific cutting energy distribution mechanisms effected by impact and size effect / Y. Song, H. Cao, D. Qu, H. Yi, X. Kang, X. Huang, J. Zhou, C. Yan // Journal of Manufacturing Processes. – 2022. – Vol. 79. – P. 731–744. – doi: 10.1016/j.jmapro.2022.05.024.
  15. Investigation on the effect of hybrid nanofluid in MQL condition in orthogonal turning and a sustainability assessment / E. Usluer, U. Emiroglu, Y.F. Yapan, G. Kshitij, N. Khanna, M. Sar?kaya, A. Uysal // Sustainable Materials and Technologies. – 2023. – Vol. 36 (16). – P. e00618. – doi: 10.1016/j.susmat.2023.e00618.
  16. Evaluation of machining characteristics of SiO2 doped vegetable based nanofluids with Taguchi approach in turning of AISI 304 steel / A.Ç. Sencan, S. Sirin, E.N.S. Saraç, B. Erdogan, M.R. Koçak // Tribology International. – 2024. – Vol. 191. – doi: 10.1016/j.triboint.2023.109122.
  17. Machinability assessment of hybrid nano cutting oil for minimum quantity lubrication (MQL) in hard turning of 90CrSi steel / T.B. Ngoc, T.M. Duc, N.M. Tuan, V.L. Hoang, T.T. Long // Lubricants. – 2023. – Vol. 11 (2). – P. 54. – doi: 10.3390/lubricants11020054.
  18. Junankar A.A., Yashpal Y., Purohit J.K. Experimental investigation to study the effect of synthesized and characterized monotype and hybrid nanofluids in minimum quantity lubrication assisted turning of bearing steel // Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. – 2022. – Vol. 236 (9). – P. 1794–1813.
  19. Evaluating the effect of minimum quantity lubrication during hard turning of AISI D3 steel using vegetable oil enriched with nano-additives / A.M.M. Ibrahim, M.A. Omer, S.R. Das, W. Li, M.S. Alsoufi, A. Elsheikh // Alexandria Engineering Journal. – 2022. – Vol. 61 (12). – P. 10925–10938.
  20. Ngol M.T. Influence of technology parameters on the total cutting force in the hard turning process with NF MQL and NF MQCL method using nanofluids // Tribology in Industry. – 2023. – Vol. 44 (2). – P. 272–284. – doi: 10.24874/ti.1453.02.23.05.
  21. Pasam V.K., Neelam P. Effect of vegetable oil-based hybrid nano-cutting fluids on surface integrity of titanium alloy in machining process // Smart and Sustainable Manufacturing Systems. – 2020. – Vol. 4 (1). – P. 1–18.
  22. Usca Ü.A. The effect of cellulose nanocrystal-based nanofluid on milling performance: an investigation of dillimax 690T // Polymers. – 2023. – Vol. 15 (23). – P. 4521. – doi: 10.3390/polym15234521.
  23. A novel study on the influence of graphene-based nanofluid concentrations on the response characteristics and surface-integrity of Hastelloy C-276 during minimum quantity lubrication / G. Singh, S. Sharma, A.H. Seikh, C. Li, Y. Zhang, S. Rajkumar, A. Kumar, R. Singh, S.M. Eldin // Heliyon. – 2023. – Vol. 9 (9). – P. e19175. – doi: 10.1016/j.heliyon.2023.e19175.
  24. Das A., Patel S.K., Das S.R. Performance comparison of vegetable oil based nanofluids towards machinability improvement in hard turning of HSLA steel using minimum quantity lubrication // Mechanics & Industry. – 2019. – Vol. 20 (5). – P. 506. – doi: 10.1051/meca/2019036.
  25. Tribological performance of different concentrations of Al2O3 nanofluids on minimum quantity lubrication milling / X. Bai, J. Jiang, C. Li, L. Dong, H.M. Ali, S. Sharma // Chinese Journal of Mechanical Engineering. – 2023. – Vol. 36 (1). – P. 11.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».