Production Peculiarities of Hot-Curing Resin Samples for Potential Use in Open Space Conditions

Capa

Citar

Texto integral

Resumo

Deployable structures ensure a new round in manufacturing spacecraft components (compartments and modules, communication and power supply systems). Although there is a great number of engineering approaches and solutions in this field of research, we favor the idea of unfolding in space multi-layer inflatable structures based on a composite material (prepreg). Prepreg consists of reinforcing fibers impregnated with resin (binder) cured under open space conditions. This approach makes it possible to create light and strong structures of various shapes in space. The purpose of this study is to find a domestic material that can serve as a binder and is able to meet the requirements for binders: high curing temperature, low outgassing during curing and long storage life in an uncured state. The paper proposes to use a special resin VST-1208, which meets these requirements, for the production of prepregs. The differential scanning calorimetry method (DSC) was used to analyse the reactions occurring during resin curing. Due to the impossibility of conducting experiments in real conditions, the main step of our study is identifying an optimal strategy for production of resin samples. To this end, it is necessary to model and analyze the process of heating the samples in a vacuum thermo-cabinet. We considered the situations when the sample is in experimental conditions - in a vacuum thermo cabinet on a thermally conductive substrate, and in conditions close to outer space - in a vacuum thermo cabinet without a thermally conductive substrate (for example, on a thermally insulating substrate). Analysis of the data obtained confirmed that the considered material can be used at specified temperatures.

Sobre autores

K. Mokhireva

Institute of Continuous Media Mechanics UB RAS

Email: lyadovaka@icmm.ru
1, Akademika Koroleva St., Perm, 614013

K. Kuznetsov

Perm State University

Email: kostya.kuzneczov.2002@mail.ru
15, Bukireva St., Perm, 614990

I. Osorgina

Perm State University

Email: osorgina@psu.ru
15, Bukireva St., Perm, 614990

Bibliografia

  1. Litteken D.A. Inflatable technology: using flexible materials to make large structures // Electroactive Polymer Actuators and Devices (EAPAD) XXI. 2019. Vol. 10966. P. 1096603. doi: 10.1117/12.2500091.
  2. Schenk M., Viquerat A.D., Seffen K.A., Guest S.D. Review of Inflatable Booms for Deployable Space Structures: Packing and Rigidization // Journal of Spacecraft and Rockets. 2014. Vol. 51, No 3. P. 762-778. doi: 10.2514/1.A32598.
  3. Елисеева А.Ю., Комар Л.А., Кондюрин А.В. Вычислительное моделирование отверждения каркаса надувной антенны спутника на околоземной орбите // Вычислительная механика сплошных сред. 2020. T. 13, No 4. C. 414-423. doi: 10.7242/1999-6691/2020.13.4.32 EDN: PDFKAL.
  4. Поморцева Т.Н., Комар Л.А. О возможности создания крупногабаритных конструкций в условиях открытого космоса // Вестник Пермского университета. Математика. Механика. Информатика. 2023. No 3 (62). C. 64-75. doi: 10.17072/1993-0550-2023-3-64-75 EDN: QHASCC.
  5. Cadogan D.P., Scarborough S.E. Rigidizable materials for use in gossamer space inflatable structures. Proceedings of 19th AIAA Applied Aerodynamics Conference, Anaheim, CA, USA. 2001. p. 2001-1417. doi: 10.2514/6.2001-1417.
  6. Liu T.W., Bai J.B. Folding behavior of a deployable composite cabin for space habitats - part 1: Experimental and numerical investigation // Composite Structures. 2022. Vol. 302. P. 16244. doi: 10.1016/j.compstruct.2022.116244 EDN: SZRHUJ.
  7. Pestrenin V.M., Pestrenina I.V., Rusakov S.V., Kondyurin A.V. Curing of large prepreg shell in solar synchronous Low Earth Orbit: Precession flight regimes // Acta Astronautica. 2018. Vol. 151. P. 342-347. doi: 10.1016/j.actaastro.2018.06.029 EDN: YBODMD.
  8. Mukhametov R.R., Merkulova Yu.I., Dolgova E.V., Dushin M.I. Synthesis of heat-resistant polymer matrices via polycyclotrimerization of cyanate esters // Polymer Science. Series D. 2015. Vol. 8, No 1. P. 22-26. doi: 10.1134/S1995421215010104 EDN: WQZZSN.
  9. Железняк В.Г., Чурсова Л.В., Григорьев М.М., Косарина Е.И. Исследование повышения сопротивляемости ударным нагрузкам полицианурата с модификатором на основе линейных термостойких полимеров // Авиационные материалы и технологии. 2013. No 2 (27). C. 26-28. EDN: QCHAEZ.
  10. Славин А.В., Старцев О.В. Свойства авиационных стеклопластиков и углепластиков на ранней стадии климатического воздействия // Труды ВИАМ. 2018. No9 (69). C. 71-82. doi: 10.18577/2307-6046-2018-0-9-71-82 EDN: VAJJYG.
  11. Гусева М.А. Циановые эфиры - перспективные термореактивные связующие (обзор) // Авиационные материалы и технологии. 2015. No 2. C. 45-50. doi: 10.18577/2071-9140-2015-0-2-45-50 EDN: TQKEPZ.
  12. Фагалов А.Р., Беляев А.Ю. Моделирование стационарного теплового режима цилиндрического элемента каркаса на орбите // Вестник Пермского университета. Математика. Механика. Информатика. 2024. No 4 (67). С. 78-94. doi: 10.17072/1993-0550-2024-4-78-94 EDN: QZXOIZ.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).