Finite Semimodules Over Three-element Multiplicatively Idempotent Semirings

Capa

Citar

Texto integral

Resumo

In this paper we study the structure of finite semimodules over three-element multiplicatively idempotent semirings. The main attention is paid to the case of three-element idempotent semirings. Semimodules containing at most 6 elements over three-element idempotent semirings are described.

Sobre autores

E. Vechtomov

Vyatka State University

Autor responsável pela correspondência
Email: vecht@mail.ru
Doctor of Physical and Mathematical Sciences, Professor, Head of the Department of Fundamental Mathematics 36, Moskovskaya St., Kirov, Russia, 610000

A. Petrov

Vyatka State University

Email: apetrov43@mail.ru
Candidate of Physical and Mathematical Sciences, Associate Professor of Department of Fundamental Mathematics 36, Moskovskaya St., Kirov, Russia, 610000

A. Shklyaev

Vyatka State University

Email: sascha.schlyaev@yandex.ru
Bachelor of the Fourth Year of Study in the Field of Mathematics and Computer Science 36, Moskovskaya St., Kirov, Russia, 610000

Bibliografia

  1. Vechtomov, E. M. (2024), "On semimodules over multiplica-tively idempotent semirings", International Scientific Conference "Algebra and Mathematical Logic: theory and applications", KFU, Kazan, pp. 103–104.
  2. Petrov, A. A. (2024), "On commutative additive semigroups with identity 4x=2x", International Scientific Conference "Al-gebra and Mathematical Logic: Theory and Applications", KFU, Kazan, pp. 130–131.
  3. Vechtomov, E. M. and Petrov, A. A. (2022), "Functional alge-bra and semirings. Semirings with idempotent multiplication", Lan, St. Petersburg, 180 p.
  4. Fofanova, T. S. (1982), "Polygons over distributive lattices", Universal Algebra / Colloq. Math. Soc. J. Bolyai, North-Holland, Amsterdam, pp. 289–292.
  5. Fofanova, T. S. (1978), "On injective polygons over chains", Mathematika Slovaka, Vol. 28, no. 1, pp. 21–32.
  6. Kozhukhov, I. B. and Mikhalev, A. V. (2020), "Polygons over semigroups", Fundamental and applied mathematics, Vol. 23, Iss. 3, pp. 141–199.
  7. Il’in, S. N. (2018), "On the homological classification of semir-ings", Results of science and technology. Series. Modern math-ematics and its applications. Thematic reviews, Vol. 158, pp. 3–22.
  8. Golan, J. S. (1999), "Semirings and their applications", Kluwer Academic Publishers, Dordrecht, 382 p.
  9. Grätzer, G. (1982), "General lattice theory", Mir, M., 456 p.
  10. Fofanova, T. S. (1971), "Polygons over distributive structures", Siberian Mathematical Journal, Vol. 12, no. 5, pp. 1158–1163.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).