Inverse problem on determining variable-order fractional derivative in mathematical model of anomalous variations in radon volumetric activity

Cover Page

Cite item

Full Text

Abstract

The seismicity issue in the Kamchatka region highlights the importance of fundamental research to understand the processes occurring in the Earth'scrust. Anomalous changes in the concentration of radioactive radon gas (222Rn) have been observed to be precursor to earthquakes. Monitoring involves collecting data on the volume activity of 222Rn in the recording chamber over time and detecting any unusual patterns or anomalies. However, the mechanisms behind these irregularities are still not well understood. Therefore, the authors have previously proposed new mathematical hereditary VAR models to describe the unusual migration capacity of 222Rn, taking into account the time-dependent transport process in a heterogeneous fractal geoenvironment. The key parameter of the models is the variable order of the Gerasimov-Caputo fractional derivative, related to the intensity of the 222Rn transport process with changes in the permeability of the geoenvironment.

Аim. The study is to solve the coefficient inverse problem of identifying values ​​in the mathematical hereditary model of anomalous variations of the OAR.

Research methods. Methods of mathematical modeling of processes occurring in the geological environment are used, as well as solving coefficient inverse problems for these models using an algorithm based on the Levenberg-Marquardt method (IP-LM).

Results. A series of results are obtained for solving the inverse problem with various parameters controlling the IP-LM motion. The results are divided into two types: implausible – due to going beyond the range of acceptable values ​​and the initial approximation of identified values ​​close to the reference point, similar to manually selected values; plausible – due to the initial approximation close to 0, good agreement between the results and the OAR data, where the increase in values ​​from 0 to 1 is maintained despite the loss of the reference point'sapparent periodicity.

Conclusions. The results suggest that it is possible to solve the formulated two-parameter inverse problem based on the experimental data of the OAR. The obtained results are plausible; however, the outcome of the inverse problem solution depends on the initial approximation of the identified values.

About the authors

Dmitrii A. Tverdyi

Institute of Cosmophysical Research and Radio Wave Propagation Far Eastern Branch of the Russian Academy of Sciences

Email: dimsolid95@gmail.com
ORCID iD: 0000-0001-6983-5258
SPIN-code: 2849-4814

Candidate of Physics and Mathematics, Researcher

Russian Federation, 7, Mirnaya street, Paratunka village, 684034, Russia

Roman I. Parovik

Institute of Cosmophysical Research and Radio Wave Propagation Far Eastern Branch of the Russian Academy of Sciences

Author for correspondence.
Email: parovik@ikir.ru
ORCID iD: 0000-0002-1576-1860
SPIN-code: 4295-6894

Doctor of Physics and Mathematics, Professor of the Far Eastern Branch of the Russian Academy of Sciences, Leading Researcher

Russian Federation, 7, Mirnaya street, Paratunka village, 684034, Russia

References

  1. Firstov P.P., Makarov E.O. Dynamics of subsurface radon in Kamchatka and strong earthquakes. Petropavlovsk-Kamchatsky: Vitus Bering Kamchatka State University. 2018. 148 p. EDN: VXTMDH (In Russian)
  2. Nikolopoulos D., Cantzos D., Alam A. et al. Electromagnetic and radon earthquake precursors. Geosciences. 2024. Vol. 14. No. 10. P. 271. EDN: YDMFHA
  3. Biryulin S.V., Kozlova I.A., Yurkov A.K. Investigation of informative value of volume radon activity in soil during both the stress build up and tectonic earthquakes in the South Kuril region. Bulliten of KRASEC. Earth Sci. 2019. Vol. 44. No. 4. Pp. 73–83. EDN: IMOXJB. (In Russian)
  4. Zubkov S.I. Radon precursors of earthquakes. Volcanology and Seismology. 1981. No. 6. Pp. 74–105. (In Russian)
  5. Dubinchuk V.T. Radon as a precursor of earthquakes. In Proceedings of the Isotopic geochemical precursors of earthquakes and volcanic eruption, Vienna, Austria, 9–12 September 1991. Vienna: IAEA, 1993. Pp. 9–22.
  6. Kristiansson K., Malmqvist L. Evidence for nondiffusive transport of 86Rn in the ground and a new physical model for the transport. Geophysics. 1982. Vol. 47. No. 10. doi: 10.1190/1.1441293
  7. Mandelbrot B.B. The fractal geometry of nature. New York: Times Books. 1982. 468 p.
  8. Evangelista L.R., Lenzi E.K. Fractional anomalous diffusion, an introduction to anomalous diffusion and relaxation. Cham: Springer. 2023. Pp. 189–236. doi: 10.1007/978-3-031-18150-4_5
  9. Tverdyi D.A., Makarov E.O., Parovik R.I. Hereditary mathematical model of the dynamics of radon accumulation in the accumulation chamber. Mathematics. 2023. Vol. 11. No. 4:850. doi: 10.3390/math11040850
  10. Tverdyi D.A., Makarov E.O., Parovik R.I. Research of stress-strain state of geo-environment by emanation methods on the example of alpha(t)-model of radon transport. Bulletin KRASEC. Physical and Mathematical Sciences. 2023. Vol. 44. No. 3. Pp. 86–104. EDN: AOBZGA (In Russian)
  11. Uchaikin V.V. Fractional derivatives for physicists and engineers. Vol. I. Background and Theory. Berlin/Heidelberg: Springer. 2013. 373 p. doi: 10.1007/978-3-642-33911-0
  12. Parovik R.I., Shevtsov B.M. Radon transfer processes in fractional structure medium. Mathematical Models and Computer Simulations. 2010. Vol. 2. Pp. 180–185. doi: 10.1134/S2070048210020055
  13. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations. Amsterdam: Elsevier. 2006. 523 p. EDN: YZECAT
  14. Nakhushev A.M. Fractional calculus and its application. Moscow: Fizmatlit. 2003. 272 p. EDN: UGLEPD. (In Russian)
  15. Caputo M. Linear models of dissipation whose Q is almost frequency independent – II. Geophysical Journal International. 1967. Vol. 13. No. 5. Pp. 529–539. doi: 10.1111/j.1365-246X.1967.tb02303.x
  16. Novozhenova O.G. Life and science of Alexey Gerasimov, one of the pioneers of fractional calculus in Soviet Union. Fractional Calculus and Applied Analysis. 2017. Vol. 20. Pp. 790–809. doi: 10.1515/fca-2017-0040
  17. Kabanikhin S.I. Obratnye i nekorrektnye zadachi [Inverse and Ill-Posed Problems]: 4th ed. Novosibirsk: Izdatel'stvo Sibirskogo otdeleniya RAN, 2018. 508 p. EDN: UQAVAO. (In Russian)
  18. Mueller J.L., Siltanen S. Linear and nonlinear inverse problems with practical applications. Philadelphia: Society for Industrial and Applied Mathematics, 2012. 351 p. doi: 10.1137/1.9781611972344
  19. Tverdyi D.A., Parovik R.I., Makarov E.O. Estimation of radon flux density changes in temporal vicinity of the Shipunskoe earthquake with MW = 7.0, 17 August 2024 with the use of the hereditary mathematical model. Geosciences. 2025. Vol. 15. No. 1:30. EDN: WJIKNS
  20. Tverdyi D.A. Refinement of variable order fractional derivative of Gerasimov-Caputo type by multidimensional Levenberg-Marquardt optimization method. In: Computing Technologies and Applied Mathematics. CTAM 2024. Springer Proceedings in Mathematics & Statistics. 2025. Vol. 500. Pp. 159–173. EDN: IRBPFF
  21. More J.J. The Levenberg-Marquardt algorithm: implementation and theory. In: Numerical Analysis. Lecture Notes in Mathematics. 1978. Vol. 630. Pp. 105–116. doi: 10.1007/BFb0067700
  22. Vasilyev A.V., Zhukovsky M.V. Determination of mechanisms and parameters which affect radon entry into a room. Journal of Environmental Radioactivity. 2013. Vol. 124. Pp. 185–190. EDN: RFGXPN
  23. Tverdyi D.A., Parovik R.I. Investigation of finite-difference schemes for the numerical solution of a fractional nonlinear equation. Fractal and Fractional. 2022. Vol. 6. No. 1:23. EDN: XPPXOV
  24. Tverdyi D.A. Matematicheskoe modelirovanie variaciy ob'emnoy aktivnosti radona s uchetom nasledstvennosti: model', metody resheniya, programma [Mathematical modeling of variations in radon volumetric activity taking into account heredity: model, solution methods, program]. Moscow: Akademiya Estestvoznaniya, 2025. 186 p. EDN: QUCYFP. (In Russian)
  25. Tikhonov A.N., Samarskii A.A. Equations of Mathematical Physics. London: Macmillan, 1963, 765 p.
  26. Dennis J.E., Robert Jr., Schnabel B. Numerical methods for unconstrained optimization and nonlinear equations. Philadelphia: SIAM, 394 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2026 Tverdyi D.A., Parovik R.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).