Polynomial Regression of Expert Estimates of Complex Quality
- Authors: Zot’ev D.B1, Makhin A.A1
-
Affiliations:
- Novosibirsk State University of Economics and Management
- Issue: No 1 (2025)
- Pages: 16-29
- Section: Mathematical Problems of Control
- URL: https://ogarev-online.ru/1819-3161/article/view/351154
- ID: 351154
Cite item
Abstract
The multicriteria ranking problem of objects with several useful qualities is considered. Relating to the field of multicriteria optimization, this problem also arises when management decisions are chosen among several alternatives. The goal of this study is to develop a solution method based on calculating complex (generalized mean) quality indicators that represent polynomials from the class of normalized mean functions. The latter belong to strictly monotonic, shift-invariant aggregation operators. Such polynomials are called SPs for short. For example, the weighted arithmetic mean indicators of complex quality are SPs of degree 1. Apparently, SPs have all the properties of such linear functions that are essential for multicriteria ranking. Within the method presented, called the interactive approximation of expert estimates, we SPs of arbitrary degree for calculating complex quality indicators. This approach is similar to the expert-statistical method for determining weights. It provides the best root-mean-square approximation of any number of expert estimates, reducing their uncertainty and increasing their mutual consistency during the expertise procedure. The SPs of degrees 1, 2, and 3 are described below. The interactive approximation method of expert estimates is tested for SPs of degree 2 in the problem of calculating a complex quality indicator for smartphones ranked by seven partial qualities.
About the authors
D. B Zot’ev
Novosibirsk State University of Economics and Management
Author for correspondence.
Email: zotev@inbox.ru
Novosibirsk, Russia
A. A Makhin
Novosibirsk State University of Economics and Management
Email: kislik0fist@mail.ru
Novosibirsk, Russia
References
- Азгальдов Г.Г., Райхман Э.П. О квалиметрии / под ред. А.В. Гличева. – М.: Издательство стандартов, 1973. – 172 с. [Azgaldov, G.G., Raikhman, E.P. About Qualimetry / Ed. by A.V. Glichev. – Moscow: Standards Publishing House, 1973. – 172 p. (In Russian)]
- Петровский А.Б. Теория принятия решений: учебник для студентов высших учебных заведений. – М.: Академия, 2009. – 400 с. [Petrovsky, A.B. Theory of Decision Making: A Textbook for Students of Higher Educational Institutions. – M.: Academia, 2009. – 400 p. (In Russian)]
- Подиновский В.В., Ногин В.Д. Парето-оптимальные решения многокритериальных задач. – М.: Физматлит, 2007. – 256 с. [Podinovskii, V.V., Noghin, V.D. Pareto-Optimal Solutions to Multicriteria Problems. – M.: PhysmathLit, 2007. – 256 p. (In Russian)]
- Миркин Б.Г. Проблема группового выбора. – М.: Наука, 1974. – 256 с. [Mirkin, B.G. The Problem of Group Choice. – Moscow: Science, 1974. – 256 s. (In Russian)]
- Кини Р.Л., Райфа X. Принятие решений при многих критериях: предпочтения и замещения. – M.: Радио и связь, 1981. – 560 с. [Keeney, R.L., Raiffa, H., Decisions with Multiple Objectives: Preferences and Value Tradeoffs. – New York: Wiley, 1976.]
- Анохин А.М., Глотов В.А., Павельев В.В., Черкашин А.М. Методы определения коэффициентов важности критериев // Автоматика и телемеханика. – 1997. – № 8. – C. 3–35. [Anokhin, A.M., Glotov, V.A., Pavel’ev, V.V., Cherkashin, A.M. Methods for Determination of Criteria Importance Coefficients // Avtomatika i telemekhanika. – 1997. – No. 8. – P. 3–35. (In Russian)]
- Орлов А.И. Экспертные оценки // Заводская лаборатория. Диагностика материалов. – 1996. – № 1 (62). – С. 54–60. [Orlov, A.I. Expert assessments // Zavodskaya Laboratoria. Diagnostika materialov. – 1996. – No. 1 (62). – P. 54–60. (In Russian)]
- Подиновский В.В. Идеи и методы теории важности критериев в многокритериальных задачах принятия решений. – М.: Наука, 2019. – 104 с. [Podinovskii, V.V. Ideas and methods of the theory of criteria importance in multicriteria decision-making problems. – M.: Nauka, 2019. – 104 p. (In Russian)]
- Брызгалин Г.И. Введение в теорию качества. – В.: Издательство Волгоградского политехнического института, 1988. – 91 c. [Bryzgalin, G.I. Introduction to the Theory of Quality. – Volgograd: Publishing house of the Volgograd Polytechnic Institute, 1988. – 91 s. (In Russian)]
- Джофрион А., Дайер Д, Файнберг А. Решение задачи оптимизации при многих критериях на основе человеко-машинных процедур. Применение к задаче организации учебного процесса факультета университета // Вопросы анализа и процедуры принятия решений. – М.: Мир. – 1976. – С. 126–145. [Geoffrion, A.M., Dyer, J. S., and Feinberg, A., Interactive Approach for Multicriterion Optimization, with an Application to the Operation of an Academic Department // Manage. Sci., Appl. – 1972. – Vol. 19. – P. 357–368.]
- Marler, R., Arora, J. The Weighted Sum Method for Multi-objective Optimization: New Insights // Structural and Multidisciplinary Optimization. – 2010. – No. 41. – P. 853–862.
- Calvo, T., Kolesárová, A., Komorníková, M., Mesiar, R. Aggregation Operators: Properties, Classes and Construction Methods, Aggregation operators // New Trends and Applications. – Heidelberg: Physica-Verlag, 2002. – P. 3–106.
- Зотьев Д.Б. Нормализованные средние функции и проблема свертывания показателей качества // Справочник. Инженерный журнал. – 2009. – № 5 (146). – C. 43–48. [Zotev, D.B. Normalized Averages Functions and Problem of Aggregation of Quality Indexes // Handbook. Engineering magazine. – 2009. – No. 5 (146). – P. 43–48. (In Russian)]
- Брызгалин Г.И. Теория качеств и системные приложения // Справочник. Инженерный журнал. – 2009. – № 5 (146). – C. 57–63. [Bryzgalin, G.I. Theory of Qualities and System Applications // Handbook. Engineering magazine. – 2009. – No. 5 (146). – P. 57–63. (In Russian)]
- Зотьев Д.Б. О нормализованных средних критериях, интерполирующих экспертные оценки // Справочник. Инженерный журнал. – 2012. – № 7 (184). – C. 50–56. [Zotev, D.B. On Normalized Average Criteria Interpolating Expert Estimates // Handbook. Engineering Magazine. – 2012. – No. 7 (184). – P. 50–56. (In Russian)]
- Айвазян С.А., Бухштабер В.М., Енюков И.С., Мешалкин Л.Д. Прикладная статистика. Классификация и снижение размерности. – М.: Финансы и статистика, 1989. – 606 с. [Ayvazyan, S.A., Bukhstaber, V.M., Enyukov, I.S., Meshalkin, L.D. Applied Statistics. Classification and Dimensionality Reduction. – Moscow: Finance and Statistics, 1989. – 606 p. (In Russian)]
- Зотьев Д.Б. К проблеме определения весовых коэффициентов на основании экспертных оценок. // Заводская лаборатория. Диагностика материалов. – 2011. – № 1 (77). – C. 75–78. [Zotev, D.B. On the Problem of Determining Weight Coefficients Based on Expert Assessments // Factory Laboratory. Diagnostics of Materials. – 2011. – No. 1 (77). – P. 75–78. (In Russian)]
- Литвак Б.Г. Экспертная информация: методы получения и анализа. – М.: Радио и связь. – 1982. – 184 с. [Litvak, B.G. Expert Information: Methods of Obtaining and Analysis. – Moscow: Radio and Communications. – 1982. – 184 p. (In Russian)]
- Goswami, S.S., Behera, D. K. Evaluation of the Best Smartphone Model in the Market by Integrating Fuzzy-AHP and PROMETHEE Decision-Making Approach // Decision. – 2021. – No. 1–(48). – Р. 71–96.
Supplementary files



