Approaches to speed planning for ground-based autonomous vehicles
- Authors: Livshits A.B.1, Temkin I.O.1, Fadeev A.Y.1
-
Affiliations:
- NUST MISIS
- Issue: No 116 (2025)
- Pages: 271-297
- Section: Vehicle control and navigation
- URL: https://ogarev-online.ru/1819-2440/article/view/307008
- ID: 307008
Cite item
Full Text
Abstract
About the authors
Asya Borisovna Livshits
NUST MISIS
Email: asyalivshits@yandex.ru
Moscow
Igor Olegovich Temkin
NUST MISIS
Email: temkin.io@misis.ru
Moscow
Aleksandr Yur'evich Fadeev
NUST MISIS
Email: frogcatcher@mail.ru
Moscow
References
- AÑON A.M. et al. Multi-profile quadratic programming (MPQP) for optimal gap selection and speed planning of au-tonomous driving // IEEE Int. Conf. on Robotics and Auto-mation (ICRA–2024). – IEEE, 2024. – P. 12158–12164.
- BOYD S.P., VANDENBERGHE L. Convex optimization. – Cambridge University Press, 2004.
- DIACHUK M., EASA S.M. Simultaneous Trajectory and Speed Planning for Autonomous Vehicles Considering Ma-neuver Variants // Applied Sciences. – 2024. – Vol. 14, No. 4. – P. 1579.
- DU Z. et al. Speed profile optimisation for intelligent vehi-cles in dynamic traffic scenarios // Int. Journal of Systems Science. – 2020. – Vol. 51, No. 12. – P. 2167–2180.
- ELBANHAWI M., SIMIC M., JAZAR R. In the passenger seat: investigating ride comfort measures in autonomous cars // IEEE Intelligent Transportation Systems Magazine. – 2015. – Vol. 7, No. 3. – P. 4–17.
- Expanding Waymo’s testing to the city that keeps it weird [Электронный ресурс]. – URL: https://waymo.com/blog/2023/03/expanding-waymos-testing-to-austin/ (дата обра-ще¬ния: 16.03.2025)
- FU D. et al. Drive like a human: Rethinking autonomous driving with large language models // IEEE/CVF Winter Conf. on Applications of Computer Vision Workshops (WACVW–2024). – IEEE, 2024. – P. 910–919.
- KLANČAR G. et al. Drivable path planning using hybrid search algorithm based on E* and Bernstein–Bézier motion primitives // IEEE Trans. on Systems, Man, and Cybernetics: Systems. – 2019. – Vol. 51, No. 8. – P. 4868–4882.
- KRÜGER T.J., GÖHRING D., ULBRICH F. Graph-Based Speed Planning for Autonomous Driving. – PhD thesis, 2019.
- LEE D. et al. Convolution neural network-based lane change intention prediction of surrounding vehicles for ACC // IEEE 20th Int. Conf. on Intelligent Transportation Systems (ITSC–2017). – IEEE, 2017. – P. 1–6.
- LIU C., ZHAN W., TOMIZUKA M. Speed profile planning in dynamic environments via temporal optimization // IEEE Intelligent Vehicles Symposium (IV). – IEEE, 2017. – P. 154–159.
- MARTIN D., LITWHILER D. An investigation of accelera-tion and jerk profiles of public transportation vehicles // An-nual Conference & Exposition. – 2008. – P. 13.194.1–13.194.13.
- MOZAFFARI S. et al. Deep learning-based vehicle behavior prediction for autonomous driving applications: A review // IEEE Trans. on Intelligent Transportation Systems. – 2020. – Vol. 23, No. 1. – P. 33–47.
- SHIMIZU Y. et al. Jerk constrained velocity planning for an autonomous vehicle: Linear programming approach // Int. Conf. on Robotics and Automation (ICRA–2022). – IEEE, 2022. – P. 5814–5820.
- SINGH K.B., SIVARAMAKRISHNAN S. Extended pacejka tire model for enhanced vehicle stability control // arXiv preprint: arXiv:2305.18422. – 2023.
- XU W. Motion planning for autonomous vehicles in urban scenarios: a sequential optimization approach : PhD thesis. – Carnegie Mellon University, 2021.
- YANG G., YAO Y. Vehicle local path planning and time consistency of unmanned driving system based on convolu-tional neural network // Neural Computing and Applications. – 2022. – P. 1–14.
- YEO J., LEE J., JANG K. The effects of rainfall on driving behaviors based on driving volatility // Int. Journal of Sus-tainable Transportation. – 2021. – Vol. 15, No. 6. – P. 435–443.
- ZHANG J., JIN H. Optimized calculation of the economic speed profile for slope driving: Based on iterative dynamic programming // IEEE Trans. on Intelligent Transportation Systems. – 2020. – Vol. 23, No. 4. – P. 3313–3323.
- ZHANG Y. et al. Optimal vehicle path planning using quad-ratic optimization for baidu apollo open platform // IEEE In-telligent Vehicles Symposium (IV). – IEEE, 2020. – P. 978–984.
- ZHAO F. et al. On-Road Trajectory Planning of Connected and Automated Vehicles in Complex Traffic Settings: A Hier-archical Framework of Trajectory Refinement // IEEE Ac-cess. – 2024. – Vol. 12. – P. 7456–7468.
- ZHAO T. et al. Multi-agent tensor fusion for contextual tra-jectory prediction // Proc. of the IEEE/CVF conference on computer vision and pattern recognition. – 2019. – P. 12126–12134.
Supplementary files
