Coindidence point search algorithm in complex systems
- Authors: Kotyukov A.M.1, Pavlova N.G.2,3,4,5
-
Affiliations:
- V.A. Trapeznikov Institute of Control Sciences of RAS
- V.A. Trapeznikov Institute of Control Sciences of RAS, Moscow
- RUDN University, Moscow
- G.R. Derzhavin Tambov State University, Tambov
- PhD
- Issue: No 107 (2024)
- Pages: 6-27
- Section: Systems analysis
- URL: https://ogarev-online.ru/1819-2440/article/view/285158
- DOI: https://doi.org/10.25728/ubs.2024.107.1
- ID: 285158
Cite item
Full Text
Abstract
The paper is dedicated to complex systems analysis, in particular, the question of searching a coincidence point for two mappings. A coincidence point is a point at which the image of one mapping coincides with the one of another mapping at this point. This notion is a generalization of fixed point concept. It can be applied to information processing, artificial intellect and system analysis. Besides, this concept may be applied in economical problems such as resourse management, production volume calculation and price regulation. In this paper coincidence points theory is applied to the question of equilibrium in market system. An equilibrium is a state at which the supply of all goods on the market equals to thier demand. We developed a search algorithm of coincidence point for covering and Lipschitz-continuous mappings. The work of this algorithm is demonstrated on open market model. In this model supply and demand mappings are restored by their price elasticities. Elasticity is a measure of change for one variable under the change of another. We consider partical equilibrium in this model. It is a state at which supply equals demand for some subset of goods, not all of them. Equilibrium is conisedered as a coincidence point of supply and demand mappings. We complement the results with the example of partial equilibrium in the model of two goods.
Keywords
About the authors
Alexander Mikhaylovich Kotyukov
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: amkotyukov@mail.ru
Moscow
Natal'ya Gennad'evna Pavlova
V.A. Trapeznikov Institute of Control Sciences of RAS, Moscow; RUDN University, Moscow; G.R. Derzhavin Tambov State University, Tambov; PhD
Email: natasharussia@mail.ru
assistant professor
References
- АРУТЮНОВ А.В. Итерационный метод нахождения то-чек совпадения двух отображений // Ж. вычисл. матем. иматем. физ. – 2012. – Т. 52, №11. – С. 1947–1950.
- АРУТЮНОВ А.В. Накрывающие отображения в метриче-ских пространствах и неподвижные точки // Докл. РАН. –2007. – Т. 416, №2. – С. 151–155.
- АРУТЮНОВ А.В., ЖУКОВСКИЙ С.Е. Применение мето-дов обыкновенных дифференциальных уравнений для гло-бальных теорем об обратной функции // Дифференциаль-ные уравнения. – 2019. – Т. 55, №4. – С. 452–463.
- АРУТЮНОВ А.В., КОТЮКОВ А.М., ПАВЛОВА Н.Г.Equilibrium in Market Models with Known Elasticities //Advances in Systems Science and Applications. – 2021. –Vol. 24, №4. – P. 130–144.
- АРУТЮНОВ А.В., ПАВЛОВА Н.Г., ШАНАНИН А.А. Рав-новесные цены в одной модели экономического равновесия //Матем. моделирование. – 2016. – Т. 28, №3. – С. 3–22.
- АРУТЮНОВ А.В., ЖУКОВСКИЙ С.Е., ПАВЛОВА Н.Г.Равновесные цены как точка совпадения двух отображе-ний // Ж. вычисл. матем. и матем. физ. – 2013. – Т. 53, №2. –С. 225–237.
- ЖУКОВСКИЙ С.Е. О накрываемости линейных операто-ров на полиэдральных множествах // Изв. вузов. Матем. –2016. – №9. – C. 74–77.
- КОТЮКОВ А.М. Итерационный процесс поиска точек сов-падения в модели «спрос-предложение» // Итоги науки итехники. Современная математика и ее приложения. Тема-тические обзоры. – 2022. – Т. 207. – С. 68–76.
- КОТЮКОВ А.М., ПАВЛОВА Н.Г. Устойчивость и неедин-ственность положения равновесия в модели откры-того рынка // Труды 15-й Международной конферен-ции «Управление развитием крупномасштабных систем»(MLSD’2022). – 2022. – С. 665–668.
- ARUTYUNOV A., AVAKOV E., GEL’MAN B., DMITRUK A.et al. Locally covering maps in metric spaces and coincidencepoints // J. Fixed Points Theory and Applications. – 2009. –Vol. 5, №1. – P. 5–16.
- KOTYUKOV A.M., PAVLOVA N.G. Nonuniquenessof Equilibrium in Closed Market Model // Advances inSystems Science and Applications. – 2023. – 23(2). –P. 184–194.
Supplementary files


