Torsion problem: stress statement and solution by the boundary element method

Cover Page

Cite item

Full Text

Abstract

The formulation of the problem of torsion regarding stresses and its solution by the boundary elements method are described. The main advantage of the problem formulation in stresses is direct determination of stresses in the cross-section, unlike the classical formulation, when the result of the approximate solution is the Prandtl stress function values, and the determination of stresses is brought down to numerical differentiation. The boundary integral equation of the second kind is obtained to formulate the problem with respect to stresses. The procedure for solving the problem by the boundary elements method is described, the system of solving equations is compiled. Solutions of test problems on torsion of rods with rectangular and channel cross-sections are presented. Comparison of the calculation results with known analytical solutions illustrates the reliability and permissible engineering accuracy of the obtained solutions.

About the authors

Vladimir V. Lalin

Peter the Great St. Petersburg Polytechnic University; RUDN University

Author for correspondence.
Email: vllalin@yandex.ru
ORCID iD: 0000-0003-3850-424X

Dr.Sc., Professor of the Higher School of Industrial, Civil and Road Construction of the Institute of Civil Engineering

St. Petersburg, Russian Federation; Moscow, Russian Federation

Daniil A. Semenov

Peter the Great St. Petersburg Polytechnic University

Email: dan290797@gmail.com
ORCID iD: 0000-0002-9144-1412

PhD student of the Higher School of Industrial, Civil and Road Construction of the Institute of Civil Engineering

St. Petersburg, Russian Federation

References

  1. Arutyunyan N.H., Abramyan B.L. Torsion of elastic bodies. Moscow: Fizmatgiz Publ.; 1963. (In Russ.)
  2. Chen H., Gomez J., Pindera M.J. Saint Venant’s torsion of homogeneous and composite bars by the finite volume method. Composite Structures. 2020;242:112-128. https://doi.org/10.1016/j.compstruct.2020.112128
  3. Chen K.H., Kao J.H., Chen J.T., Liau J.F. A new error estimation technique for solving torsion bar problem with inclusion by using BEM. Engineering Analysis with Boundary Elements. 2020;115:168-211. https://doi.org/10.1016/j.enganabound.2020.02.012
  4. Ma X., Kiani K. Spatially nonlocal instability modeling of torsionaly loaded nanobeans. Engineering Analysis with Boundary Elements. 2023;154:29-46. https://doi.org/10.1016/j.enganabound.2023.05.012
  5. Labaki J., A Barros P.L., Mesquita E. A model of the time-harmonic torsional response of piled plates using an IBEM-FEM coupling. Engineering Analysis with Boundary Elements. 2021;125:241-249. https://doi.org/10.1016/j.enganabound. 2021.01.010
  6. Sapountzakis E.J., Tsipiras V.J., Argyridi A.K. Torsional vibration analysis of bars including secondary torsional shear deformation effect by the boundary element method. Journal of Sound and Vibration. 2015;355:208-231. https://doi.org/10.1016/j.jsv.2015.04.032
  7. Katsikadelis J.T. The Boundary Element Method for Engineers and Scientists. Theory and Applications. Athens: School of Civil Engineering. National Technical University of Athens; 2016.
  8. Fairweather G., Rizzo F.J., Shippy D.J., Wu Y.S. On the numerical solution of two-dimensional potential problems by an improved boundary integral equation method. Journal of computational physics. 1979;31:96-112.
  9. Brebbia C.A., Telles J.C.F., Wrobel L.C. Boundary Element Techniques: Theory and Applications in Engineering. SpringerLink; 1984. https://doi.org/10.1007/978-3-642-48860-3
  10. Kazakova A.O. Application of the boundary element method to numerical modeling of rod torsion. Nauchnye issledovaniya: ot teorii k praktike [Scientific research: from theory to practice]. 2016;(9):25-30. (In Russ.)
  11. Chen F. Solution of torsional problems by BEM. WIT Transactions of Modelling and Simulations. 1993;1:1-9.
  12. Igumnov L.A. Variants of boundary-element method and boundary-integral equation method in linear theory of elasticity. Vestnik of Lobachevsky University of Nizhni Novgorod. 2000;3(2):11-21. (In Russ.)
  13. Temis Y.M., Karaban V.V. Boundary element technique in torsion problems of beams with multiply connected cross-sections. Journal of the Korean Society for Industrial and Applied Mathematics. 2001;5(2):39-51.
  14. Dumont N.A. Complex-variable, high-precision formulation of the consistent boundary element method for 2D potential and elasticity problems. Engineering Analysis with Boundary Elements. 2023;152:552-574. https://doi.org/ 10.1016/j.enganabound.2023.04.024
  15. Dumont N.A. The consistent boundary element method for potential and elasticity: Part I - Formulation and convergence theorem. Engineering Analysis with Boundary Elements. 2023;149:127-142. https://doi.org/10.1016/ j.enganabound.2023.01.017
  16. Gil-Martin L.M., Palomares A., Hernandez-Montes E. Approximate expression of the Prandtl membrane analogy in linear elastic pure torsion of open thin-walled cross sections and regular polygons. International Journal of Solids and Structures. 2021;210-211:109-118. https://doi.org/10.1016/j.ijsolstr.2020.11.020
  17. Tsiptsis I.N., Sapountzakis E.J. Bars under nonuniform torsion - Application to steel bars, assessment of EC3 guidelines. Engineering Structures. 2014;60:133-147. https://doi.org/10.1016/j.engstruct.2013.12.027
  18. Sapountzakis E.J. Nonuniform torsion of multi-material composite bars by the boundary element method. Computers & Structures. 2001;79:2805-2816. https://doi.org/10.1016/S0045-7949(01)00147-X
  19. Lurie A.I. Theory of Elasticity. Springer-Verlag, Berlin, Heidelberg; 2005.
  20. Friedman Z., Kosmatka J.B. Torsion and flexure of a prismatic isotropic beam using the boundary element method. Computers & Structures. 2000;74(4):479-494. https://doi.org/10.1016/S0045-7949(99)00045-0
  21. Cruz J.M.F., Mendonça A.V. Torsional analysis of thin-walled beams of open sections by the direct boundary element method. Computers & Structures. 2014;136:90-97. https://doi.org/10.1016/j.compstruc.2014.02.002

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).