Comparative analysis of the surface topography of thermoplastic and acrylic dental materials using scanning electron microscopy: a nonrandomized controlled laboratory study

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Surface-quality control of dental materials used in prosthodontics remains essential because reducing alterations in the microtopography of prosthetic components lowers microbial adhesion in the oral cavity and helps prevent inflammatory conditions.

AIM: This work aimed to assess the surface quality of thermoplastic and acrylic polymer materials after final polishing and to compare their microlevel characteristics using scanning electron microscopy.

METHODS: The study was conducted at First Sechenov Moscow State Medical University. Four contemporary polymer materials (4 samples per material) were evaluated after standardized surface polishing. A Tescan Vega 3 SBU scanning electron microscope (Tescan, Czech Republic) equipped with an Inca X-act energy-dispersive spectrometer (Oxford Instruments, United Kingdom) was used. In addition, a visual macro-assessment of the sample surfaces was performed.

RESULTS: The thermoplastic polyetheretherketone material Dentokeep PEEK (PEEKCHINA, China) demonstrated the fewest surface defects, including minimal roughness and particulate inclusions, particularly in polished samples. Acrylic polymers exhibited the highest defect density, with pronounced roughness and delamination of the superficial layer.

CONCLUSION: Taking into account their favorable microtopographic characteristics, polished thermoplastic materials, especially polyetheretherketone, may be recommended for prioritized use in clinical prosthodontics, in contrast to acrylic polymers.

About the authors

Denis A. Nikolenko

The First Sechenov Moscow State Medical University

Author for correspondence.
Email: nikolenko_d_a@staff.sechenov.ru
ORCID iD: 0000-0002-7119-002X
SPIN-code: 3406-1509

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Anna S. Berezinskaya

The First Sechenov Moscow State Medical University

Email: berezinskaya_a_s@staff.sechenov.ru
ORCID iD: 0009-0001-7057-4638

MD

Russian Federation, Moscow

Dmitry S. Filippov

The First Sechenov Moscow State Medical University

Email: filippov.dmitry80@mail.ru
ORCID iD: 0009-0009-1466-0193

MD

Russian Federation, Moscow

Boris S. Panfilov

The First Sechenov Moscow State Medical University

Email: panfilov_b_s@staff.sechenov.ru
ORCID iD: 0009-0006-7063-1248

MD

Russian Federation, Moscow

Aglaya B. Kazumova

The First Sechenov Moscow State Medical University

Email: aglaya.kazumowa@yandex.ru
ORCID iD: 0009-0003-6481-6017

MD

Russian Federation, Moscow

References

  1. Giti R, Dabiri S, Motamedifar M, Derafshi R. Surface roughness, plaque accumulation, and cytotoxicity of provisional restorative materials fabricated by different methods. PLoS One. 2021;16(4):e0249551. doi: 10.1371/journal.pone.0249551 EDN: DMNRSY
  2. Kaczmarek K, Konieczny B, Siarkiewicz P, et al. Surface characterization of current dental ceramics using scanning electron microscopic and atomic force microscopic techniques. Coatings. 2022;12(8):1122. doi: 10.3390/coatings12081122 EDN: TPIENN
  3. Akay C, Avukat EN, Topcu MB, et al. Evaluation of helium plasma surface modification on tensile bond strength of denture base materials: a scanning electron microscope study. ECS J Solid State Sci Technol. 2021;10(12):124002. doi: 10.1149/2162-8777/ac3e7d EDN: IIQBCI
  4. Atalay C, Koc Vural U, Miletic I, Gurgan S. Shear bond strengths of two newly marketed self-adhesive resin cements to different substrates: A light and scanning electron microscopy evaluation. Microsc Res Tech. 2022;85(5):1694–1702. doi: 10.1002/jemt.24031 EDN: BFENAX
  5. Béranger M. Study on the use of silicon drift detector to get information on light emitted by luminescent materials. American Journal of Physics and Applications. 2019;7(2):34–42. doi: 10.11648/j.ajpa.20190702.11
  6. Kozmos M, Virant P, Rojko F, et al. Bacterial adhesion of Streptococcus mutans to dental material surfaces. Molecules. 2021;26(4):1152. doi: 10.3390/molecules26041152 EDN: VKXOMH
  7. Kreve S, Dos Reis AC. Effect of surface properties of ceramic materials on bacterial adhesion: A systematic review. J Esthet Restor Dent. 2022;34(3):461–472. doi: 10.1111/jerd.12799 EDN: AAGTQL
  8. Khoury P, Kharouf N, Etienne O, et al. Physicochemical properties and bacterial adhesion of conventional and 3D printed complete denture PMMA materials: an in vitro study–part I. J Contemp Dent Pract. 2024;25(11):1001–1008. doi: 10.5005/jp-journals-10024-3781
  9. Costa MS, Lovato da Silva CH, de Cássia Oliveira V, et al. Effects of different forms of denture adhesives on biofilm formation, adhesive strength and hygiene of complete dentures. Int J Prosthodont. 2022;35(6):784–792. doi: 10.11607/ijp.7188 EDN: IHKXTZ
  10. Van Noort R, Barbour ME. Introduction to dental materials. Elsevier Health Sciences; 2023.
  11. Duong HY, Roccuzzo A, Stähli A, et al. Oral health-related quality of life of patients rehabilitated with fixed and removable implant-supported dental prostheses. Periodontol 2000. 2022;88(1):201–237. doi: 10.1111/prd.12419 EDN: NEXSYC
  12. Kowalski R, Kozak M, Sobolewska E. Contemporary hybrid acrylic materials and modern thermoplastics in the manufacture of dental prostheses. Pomeranian Journal of Life Sciences. 2023;69(1). doi: 10.21164/pomjlifesci.904
  13. Golmohammadi F, Ghasemi Z. Comparative study of the compressive strength of heat-cure acrylic resin with flexible thermoplastic acrylic. Contemporary Orofacial Science. 2024;2(2):26–32. doi: 10.1055/s-0045-1810440
  14. Ionescu RN, Totan AR, Imre MM, et al. Prosthetic materials used for implant-supported restorations and their biochemical oral interactions: a narrative review. Materials (Basel). 2022;15(3):1016. doi: 10.3390/ma15031016 EDN: OTCXHW
  15. Saleeva L, Kashapov R, Shakirzyanov F, et al. The effect of surface processing on the shear strength of cobalt-chromium dental alloy and ceramics. Materials (Basel). 2022;15(9):2987. doi: 10.3390/ma15092987 EDN: XPOQSJ

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).