Monitoring the migration and survival of mesenchymal stem cells in a critical bone defect model in dental implant sites: an experimental in vivo laboratory study

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Mesenchymal stem cells (MSCs) can migrate from the injection site to nearby injured areas, where they promote tissue repair. This expands the clinical applications of stem cells in regenerative medicine and improves treatment outcomes in patients with various injuries and diseases.

AIM: The work aimed to study the migration behavior of MSCs from the injection site to injured areas and evaluate their role in tissue repair during dental implantation.

METHODS: We labeled adipose-derived rat MSCs with a fluorescent dye and transplanted them into an area with a critical bone defect in a rat’s parietal bone.

RESULTS: Intravital dynamic imaging of MSCs in rats showed that the cells remained in the area of the bone defect and migrated to the lesion from distant injection sites during the 14-day follow-up.

CONCLUSION: Important evidence was obtained regarding the migration of MSCs and their potential for tissue regeneration in bone defects. MSCs can migrate from the injection site to nearby injured areas, where they promote tissue repair. This expands the clinical applications of stem cells in regenerative medicine and improves treatment outcomes in patients with various injuries and diseases.

About the authors

Irek R. Khafizov

Kazan (Volga Region) Federal University

Author for correspondence.
Email: khafizovirek@mail.ru
ORCID iD: 0000-0003-4077-2788
SPIN-code: 9973-5280

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Kazan

Fanilya A. Khafizova

Kazan (Volga Region) Federal University

Email: fanilyakhafizova@mail.ru
ORCID iD: 0000-0002-1262-5513
SPIN-code: 5613-7720

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Kazan

Elena Yu. Zakirova

Kazan (Volga Region) Federal University

Email: lenahamzina@yandex.ru
ORCID iD: 0000-0001-6750-640X
SPIN-code: 4022-8554

Cand. Sci. (Biology)

Russian Federation, Kazan

Margarita N. Zhuravleva

Kazan (Volga Region) Federal University

Email: MNZhuravleva@kpfu.ru
ORCID iD: 0000-0001-8592-5325
SPIN-code: 8306-5622

Cand. Sci. (Biology)

Russian Federation, Kazan

Elnara M. Biktagirova

Kazan (Volga Region) Federal University

Email: EMBiktagirova@kpfu.ru
ORCID iD: 0000-0003-1455-5544
SPIN-code: 6575-0764

Cand. Sci. (Biology)

Russian Federation, Kazan

Albert A. Rizvanov

Kazan (Volga Region) Federal University; Tatarstan Academy of Sciences

Email: Albert.Rizvanov@kpfu.ru
ORCID iD: 0000-0002-9427-5739
SPIN-code: 7031-5996

Dr. Sci. (Biology), Professor

Russian Federation, Kazan; Kazan

References

  1. Katina MN, Gaifullina RF, Hayatova ZG, et al. Isolation, culture and differentiation of rat (rattus norvegicus) and hamster (mesocricetus auratus) adipose derived multipotent mesenchymal stromal cells. Kletochnaja transplantologija i tkanevaja inzhenerija. 2012;7(3):82–87. doi: 10.12891/2227-6587-2012-7-3-82-87 EDN: PRDGGH
  2. Khairutdinova AR, Khafizova FA, Mirgazizov MZ. Use of stromal vascular fraction cells from adipose tissue to replace segmental defect of dog’’s alveolar crest: experimental case. Genes & Cells. 2015;10(4):110–113. doi: 10.11266/2077-6352-2015-10(4)-110-113 EDN: WCLIXD
  3. Cheah CW, Al-Namnam NM, Lau MN, et al. Synthetic material for bone, periodontal, and dental tissue regeneration: where are we now, and where are we heading next? Materials (Basel). 2021;14(20):6123. doi: 10.3390/ma14206123 EDN: AYPNQB
  4. Mishchenko O, Yanovska A, Kosinov O, et al. Synthetic calcium-phosphate materials for bone grafting. Polymers (Basel). 2023;15(18):3822. doi: 10.3390/polym15183822 EDN: BCLRWJ
  5. Zhao D, Zhu T, Li J, et al. Poly(lactic-co-glycolic acid)-based composite bone-substitute materials. Bioact Mater. 2020;6(2):346–360. doi: 10.1016/j.bioactmat.2020.08.016 EDN: KBDDIL
  6. Li J, Cui X, Hooper GJ, et al. Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: A review. J Mech Behav Biomed Mater. 2020;105:103671. doi: 10.1016/j.jmbbm.2020.103671 EDN: WYLLOO
  7. Zhang T, Li J, Wang Y, et al. Hydroxyapatite/polyurethane scaffolds for bone tissue engineering. Tissue Eng Part B Rev. 2024;30(1):60–73. doi: 10.1089/ten.TEB.2023.0073 EDN: ACLCVE
  8. Manescu A, Giuliani A, Mohammadi S, et al. Osteogenic potential of dualblocks cultured with human periodontal ligament stem cells: in vitro and synchrotron microtomography study. J Periodontal Res. 2016;51(1):112–124. doi: 10.1111/jre.12289 EDN: WTAFDP
  9. Liu J, Zhou P, Smith J, et al. A plastic β-tricalcium phosphate/gelatine scaffold seeded with allogeneic adipose-derived stem cells for mending rabbit bone defects. Cell Reprogram. 2021;23(1):35–46. doi: 10.1089/cell.2020.0031 EDN: YLXIBY
  10. Fu X, Liu G, Halim A, et al. Mesenchymal stem cell migration and tissue repair. Cells. 2019;8(8):784. doi: 10.3390/cells8080784
  11. Walters G, Pountos I, Giannoudis PV. The cytokines and micro-environment of fracture haematoma: Current evidence. J Tissue Eng Regen Med. 2018;12(3):e1662–e1677. doi: 10.1002/term.2593
  12. López-Valverde N, Aragoneses J, López-Valverde A, et al. Role of BMP-7 on biological parameters osseointegration of dental implants: Preliminary results of a preclinical study. Front Bioeng Biotechnol. 2023;11:1153631. doi: 10.3389/fbioe.2023.1153631
  13. Tong L, Zhao H, He Z, Li Z. Current perspectives on molecular imaging for tracking stem cell therapy. In: Medical Imaging in Clinical Practice. Intech; 2013. doi: 10.5772/53028
  14. Cheng MA, Farmer E, Huang C, et al. Therapeutic DNA vaccines for human papillomavirus and associated diseases. Hum Gene Ther. 2018;29(9):971–996. doi: 10.1089/hum.2017.197
  15. Zakirova EY, Zhuravleva MN, Masgutov RF, et al. Isolation, analysis and application of authogenic adipose derived multipotential mesenchymalstromal cells from dog for therapy pseudoarthrosis of tibial boneg. Genes & Cells. 2014;IX(3):70–75 doi: 10.23868/gc120310
  16. Zakirova EY, Masgutov RF, Naumenko EA, et al. Application of allogenic adipose-derived multipotent mesenchymal stromal cells from cat for tibial bone pseudoarthrosis therapy (case report). BioNanoScience. 2017;7(1):207–211 doi: 10.1007/s12668-016-0306-x EDN: YVOOJH
  17. Aslan H, Zilberman Y, Kandel L, et al. Osteogenic differentiation of noncultured immunoisolated bone marrow-derived CD105+ cells. Stem Cells. 2006;24(7):1728–1737. doi: 10.1634/stemcells.2005-0546
  18. Mikhailovsky AA, Kulakov AA, Korolev VM, Vinnichenko OIu. Clinical and radiological study on tissue regeneration after alveolar bone augmentation with various osteoplastic materials and membranes. Stomatology. 2014;93(4):37–40. (In Russ.) EDN: SWMYXF
  19. Romanenko A, Chuev V, Buzov A, et al. Clinical evaluation of osteoplastic material bioplast-dent (a review). Clinical Dentistry (Russia). 2020;(2):46–54. doi: 10.37988/1811-153X_2020_3_93 EDN: OQNCYV
  20. Weir C, Morel-Kopp MC, Gill A, et al. Mesenchymal stem cells: isolation, characterisation and in vivo fluorescent dye tracking. Heart Lung Circ. 2008;17(5):395–403. doi: 10.1016/j.hlc.2008.01.006
  21. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–317. doi: 10.1080/14653240600855905
  22. Iaquinta MR, Mazzoni E, Bononi I, et al. Adult stem cells for bone regeneration and repair. Front Cell Dev Biol. 2019;7:268. doi: 10.3389/fcell.2019.00268 EDN: LQFZWF
  23. Fu J, Wang Y, Jiang Y, et al. Systemic therapy of MSCs in bone regeneration: a systematic review and meta-analysis. Stem Cell Res Ther. 2021;12(1):377. doi: 10.1186/s13287-021-02456-w

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).