Prognostic model of acute pancreatitis


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Abstract. The models for the prognosis of infectious complications and the outcome of acute pancreatitis are developed based on a mathematical analysis of the totality of clinical and laboratory data on the course of the disease, which have the form of a decision tree. It was revealed that laboratory indicators show statistically significant intergroup differences and allow to form a prognosis of the course of the disease. The threshold values of laboratory parameters calculated as a result of applying the classification and regression algorithm by constructing a decision tree are the nodal points for the distribution of patients according to the likelihood of further development of the disease. Thus, the presence of an international normalized ratio of more than 1,31 or an international normalized ratio of more than 1,31 and a hematocrit of less than 40% with a predictive probability of 80% is associated with the development of infectious complications in any period of the disease in the first 3 days of the development of the disease. If in the first 3 days of the disease the glucose level exceeds 11,55 mmol / L and the concentration of Ca2+ ions is less than 0,66 mmol/L, the probability of death is more than 70%. If the glucose level is more than 11,5 mmol/L and the level of Ca2+ ions is less than or equal to 0,66 mmol / L, or the glucose level is less than or equal to 11,5 mmol/L and the prothrombin index is less than or 83% and the hematocrit is less than or equal to 39,8% the probability of developing a fatal outcome at any period of the disease is 3 times higher compared to other patients. Prediction models of infectious complications and disease outcome have an accuracy of 78 and 87%, respectively. The use of these models allows stratification of patients upon admission to the hospital, highlighting the most disadvantaged patients in the prognostic plan. The models are quite simple and easy to use, do not require complex expensive studies. Thanks to the algorithm used in building models, they have the properties of self-learning, which in the future will increase their accuracy.

About the authors

S. Ya. Ivanusa

Military medical academy of S.M. Kirov

Author for correspondence.
Email: vmeda-nio@mil.ru
Russian Federation, Saint Petersburg

M. V. Lazutkin

Military medical academy of S.M. Kirov

Email: vmeda-nio@mil.ru
Russian Federation, Saint Petersburg

M. I. Gal’chenko

aint-Petersburg State Agrarian University

Email: vmeda-nio@mil.ru
Russian Federation, Pushkin, Saint-Petersburg

A. V. CHebotar’

Military medical academy of S.M. Kirov

Email: vmeda-nio@mil.ru
Russian Federation, Saint Petersburg

V. I. Kulagin

Saint - Petersburg institute of emergency care n.a. I.I.Dzhanelidze

Email: vmeda-nio@mil.ru
Russian Federation, Saint Petersburg

References

  1. Алексеев, С.А. Метод профилактики гнойно-септических осложнений острого деструктивного панкреатита / С.А. Алексеев [и др.] // Хирургия. Восточная Европа. – 2017. – № 3. – С. 400–410.
  2. Багненко, С.Ф. Острый панкреатит (Протоколы диагностики и лечения) / С.Ф. Багненко [и др.] // Анналы хирургической гепатологии. – 2006. – Т. 11, № 1. – С. 60–66.
  3. Брагин, А.Г. Регионарная внутриартериальная лекарственная терапия в комплексном лечении больных деструктивным панкреатитом: дисс. … канд. мед. наук / А.Г. Брагин. – М., 2010. – 156 с.
  4. Валеев, А.А. Оценка тяжести состояния больных с острым деструктивным панкреатитом при выборе тактики лечения / А.А. Валеев // Казан. мед. журн. – 2013. – Т. 94, № 5. – С. 633–636.
  5. Винник, Ю.С. Диагностическая ценность интегральных шкал в оценке степени тяжести острого панкреатита и состояния больного / Ю.С. Винник, С.С. Дунаевская // Вестн. РАМН. – 2015. – № 1. – С. 90–94.
  6. Власов, А.П. Патогенетические основы прогнозирования острого панкреатита / А.П. Власов [и др.] // Фундамент. исслед. – 2011. – № 5. – С. 28–36.
  7. Зубарев, П.Н. Причины летальных исходов при остром деструктивном панкреатите / П.Н. Зубарев, И.Д. Косачев, С.В Паскарь // Вестн. СПбГУ. Сер. 11: Медицина. – 2009. – № 4. – С. 161–168.
  8. Овсяник, Д.М. Ранние признаки инфицирования панкреонекроза / Д.М. Овсяник, А.В. Фомин, В.В. Становенко // Мат. пленума правления Ассоц. гепатопанкреатобилиарных хирургов стран СНГ. – Самара, 2015. – С. 111–113.
  9. Острый панкреатит: клинические рекомендации / Мин-во здравоохранения Российской Федерации. – М., 2015. – 38 с.
  10. Паскарь, С.В. Эффективность методов ранней диагностики и оптимизация лечебной тактики при остром деструктивном панкреатите / С.В. Паскарь, И.Д. Косачев, С.А. Варзин // Вестн. СПбГУ. Сер.11: Медицина. – 2010. – № 1. – С. 83–91.
  11. Beger, H.G. Acute pancreatitis: research and clinical management / H.G. Beger, M. Büchler. – London: Springer Limited, 2011. – 412 p.
  12. Balthazar, E.J. Acute pancreatitis: assessment of severity with clinical and CT evaluation / E.J. Balthazar // Radiology. – 2002. – Vol. 223, № 3. – Р. 603–613.
  13. Charlson, M.E. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation / M.E. Charlson [et al.] // J. Chronic Dis. – 1987. – Vol. 40, № 5. – Р. 373–83.
  14. Harrison, D.A. The Pancreatitis Outcome Prediction (POP) Score: a new prognostic index for patients with severe acute pancreatitis / D.A. Harrison, G. D’Amico, M. Singer // Crit. Care Med. – 2007. – Vol. 35, № 7. – P. 1703–1708.
  15. Hothorn, T. Unbiased recursive partitioning: A conditional inference framework / T. Hothorn, K. Hornik, A. Zeileis // Journal of Computational and Graphical statistics. – 2006. – Vol. 15, № 3. – P. 651–674.
  16. Ranson, J.H. Prognostic signs and the role of operative management in acute pancreatitis / J.H. Ranson [et al.] // Surg. Gynecol. Obstet. – 1974. – Vol. 139, № 1. – P. 69–81.
  17. Vincent, J.L. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine / J.L. Vincent [et al.] // Intensive Care Med. – 1996. – Vol. 22, № 7. – Р. 707–10.
  18. Wickham, H. Tidy Data / H. Wickham // Journal of Statistical Software. – 2014. – Vol. 59, № 10. – P. 1–23.
  19. Wu, B.U. The early prediction of mortality in acute pancreatitis: a large population-based study / B.U. Wu [et al.] // Gut. – 2008. – Vol. 57, № 12. – P. 1698–703.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Model for the prognosis of IO in patients with AP

Download (89KB)
3. Fig. 2. Model for predicting the outcome of EP

Download (110KB)

Copyright (c) 2020 Ivanusa S.Y., Lazutkin M.V., Gal’chenko M.I., CHebotar’ A.V., Kulagin V.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».