Везикуляция эритроцитов человека и её роль в донорских эритроцитсодержащих компонентах


Цитировать

Полный текст

Аннотация

Образование микровезикул клетками крови: моноцитами, тромбоцитами, гранулоцитами, эритроцитами и эндотелиальными клетками - важнейшая особенность межклеточных взаимодействий. Эритроциты формируют микровезикулы, чтобы удалить поврежденные компоненты клетки, такие как окисленный гемоглобин и поврежденные мембранные компоненты, и таким образом продлевают продолжительность своего функционирования. Выдвинуты две гипотезы образования микровезикул: программируемая клеточная гибель (эриптоз) и кластеризация белка полосы 3 в результате нарушения межклеточных взаимодействий. В процессе эриптоза повреждение гемоглобина и изменение путей фосфорилирования мембранных белков, прежде всего белка полосы 3, приводит к ослаблению прочных связей между липидным бислоем и цитоскелетом, что сопровождается трансформацией мембраны, образованием выпячиваний и превращением их в микровезикулы. Обнаружено, что образование микровезикул эритроцитами нарушено у пациентов, страдающих различными патологиями эритроцитов: серповидно-клеточной анемией, дефицитом глюкозо-6-дегидрогеназы, сфероцитозом, малярией. Исследования последнего десятилетия убеждают, что нарушение режима взаимодействия между мембраной и цитоскелетом, вероятно, является главным механизмом, поскольку подтверждается данными, полученными при исследовании структурных изменений эритроцитов донорских гемокомпонентов, хранившихся в условиях банка крови. В настоящее время широкое распространение получили работы по изучению влияния микровезикул на сохранность эритроцитсодержащих компонентов крови. Возобновлена дискуссия о взаимосвязи количества накопленных микровезикул в компонентах крови и эффективности донорских компонентов для пациентов при переливании в зависимости от срока хранения компонентов. Детализированные данные протеомного, липидомического и иммуногенного сравнения микровезикул, полученных из различных источников, являются убедительными в идентификации триггерных стимулов, вызывающих генерацию микровезикул. Выяснение вклада полученных из эритроцитов микровезикул в воспаление, тромбоз и аутоиммунные реакции подтверждает необходимость дальнейшего изучения механизмов и последствий генерации микровезикул эритроцитами донорских компонентов, используемых для трансфузионной медицины.

Об авторах

В И Ващенко

Военно-медицинская академия им. С.М. Кирова

Email: meda-nio@mil.ru
Санкт-Петербург

В Н Вильянинов

Военно-медицинская академия им. С.М. Кирова

Email: meda-nio@mil.ru
Санкт-Петербург

Л А Скрипай

Военно-медицинская академия им. С.М. Кирова

Email: meda-nio@mil.ru
Санкт-Петербург

Е Ф Сороколетова

Военно-медицинская академия им. С.М. Кирова

Email: meda-nio@mil.ru
Санкт-Петербург

Список литературы

  1. Ващенко, В.И. Эриптоз (квазиапоптоз) эритроцитов человека и его роль в лекарственной терапии / В.И. Ващенко, В.Н. Вильянинов // Обзоры клин. фарм. лекарст. терапии. - 2019. - № 3. - C. 5-38.
  2. Зубаиров, Д.М. Микровезикулы в крови. Функции и их роль в тромбообразовании / Д.М. Зубаиров, Л.Д. Зубаирова. - М.: ГЭОТАР-Медиа, 2009. - 168 c.
  3. Almizraq, R.J. Characteristics of extracellular vesicles in red blood concentrates change with storage time and blood manufacturing method / R.J. Almizraq [et al.] // Transfus. Med. Hemother. - 2018. - Vol. 45. - P. 185-193.
  4. Arashiki, N. Membrane peroxidation and methemoglobin formation are both necessary for band 3 clustering: mechanistic insights into human erythrocyte senescence / N. Arashiki [et al.] // Biochemistry. - 2013. - Vol. 52. - P. 5760-5769.
  5. Burnouf, T. An overview of the role of microparticles/microvesicles in blood components: Are they clinically or harmful? / T. Burnouf [et al.] // Transfus. Apher. Scien. - 2015. - Vol. 53. - P. 137-145.
  6. Ciana, A. Membrane remodelling and vesicle formation during ageing of human red blood cells / A. Ciana [et al.] // Cell. Physiol. Biochem. - 2017. - Vol. 42. - P. 1127-1138.
  7. Cluitmans, J.C. Red blood cell homeostasis: pharmacological interventions to explore biochemical, morphological and mechanical properties / J.C. Cluitmans [et al.] // Front. Mol. Biosci. - 2016. - Vol. 3. - P. 1-11.
  8. D’Alessandro, A. Omics markers of the red cell storage lesion and metabolic linkage / A. D’Alessandro [et al.] // Blood Transfus. - 2017. - Vol. 15. - P. 137-144.
  9. Dinkla, S. Inflammation-associated changes in lipid composition and the organization of the erythrocyte membrane / S. Dinkla [et al.] // BBA Clin. - 2016. - Vol. 5. - P. 186-192.
  10. Distler, J.H. Microparticles as mediators of cellular cross-talk in inflammatory disease / J.H. Distler [et al.] // Autoimmunity. - 2006. - Vol. 39. - P. 683-690.
  11. Ferru, E. Thalassemic erythrocytes release microparticles loaded with hemichromes by redox activation of p72Syk kinase / E. Ferru [et al.] // Haematologica. - 2014. - Vol. 99. - P. 570-578.
  12. Harisa, G.I. Erythrocyte nanovesicles: biogenesis, biological roles and therapeutic approach erythrocyte nanovesicles / G.I. Harisa [et al.] // Saudi Pharm. J. - 2017. - Vol. 25. - P. 8-17.
  13. Koch, C.G. Real age: red blood cell aging during storage / C.G. Koch [et al.] // Ann. Thorac. Surg. - 2019. - Vol. 107. - P. 973-980.
  14. Kostova, E.B. Identification of signalling cascades involved in red blood cell shrinkage and vesiculation / E.B. Kostova [et al.] // Biosci. Rep. - 2015. - Vol. 35. - P. 1-16.
  15. Leal, J.K.F. Red blood cell homeostasis: mechanisms and effects of microvesicle generation in health and disease / J.K.F. Leal [et al.] // Front Physiol. - 2018. - Vol. 9. - P. 1-7.
  16. Luten, M. Survival of red blood cells after transfusion: a comparison between red cells concentrates of different storage periods / M. Luten [et al.] // Transfusion. - 2008. - Vol. 48. - P. 1478-1485.
  17. Qadri, S.M. Eriptosis in health and disease: A paradigm shift towards understanding the (patho) physiological implications of programmed cell death of erythrocytes / S.M. Qadri [et al.] // Blood Rev. - 2017. - Vol. 31. - P. 349-361.
  18. Roussel, C. Spherocytic shift of red blood cells during storage provides a quantitative whole cell-based marker of the storage lesion / C. Roussel [et al.] // Transfusion. - 2017. - Vol. 57. - P. 1007-1018.
  19. Rubin, O. Red blood cell-derived microparticles isolated from blood units initiate and propagate thrombin generation / O. Rubin [et al.] // Transfusion. - 2013. - Vol. 53. - P. 1744-1754.
  20. Salzer, U. Vesicles generated during storage of red cells are rich in the lipid raft marker stomatin / U. Salzer [et al.] // Transfusion. - 2008. - Vol. 48. - P. 451-462.
  21. Spinella, P.C. Duration of red blood cell storage is associated with increased incidence of deep vein thrombosis and in hospital mortality in patients with traumatic injuries / P.C. Spinella [et al.] // Crit. Care. - 2009. - Vol. 13. - P. 1-11.
  22. Tissot, J.D. The storage lesion: From past to future / J.D. Tissot [et al.] // Transfus. Clin. Biol. - 2017. - Vol. 24. - P. 277-284.
  23. Willekens, F.L. Erythrocyte vesiculation: a self-protective mechanism? / F.L. Willekens [et al.] // Br. J. Haematol. - 2008. - Vol. 141. - P. 549-556.
  24. Wither, M. Hemoglobin oxidation at functional amino acid residues during routine storage of red blood cells / M. Wither [et al.] // Transfusion. - 2016. - Vol. 56. - P. 421-426.
  25. Zimring, J.C. Established and theoretical factors to consider in assessing the red cell storage lesion / J.C. Zimring // Blood. - 2015. - Vol. 125. - P. 2185-2190.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Ващенко В.И., Вильянинов В.Н., Скрипай Л.А., Сороколетова Е.Ф., 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».