Везикуляция эритроцитов человека и её роль в донорских эритроцитсодержащих компонентах


Цитировать

Полный текст

Аннотация

Образование микровезикул клетками крови: моноцитами, тромбоцитами, гранулоцитами, эритроцитами и эндотелиальными клетками - важнейшая особенность межклеточных взаимодействий. Эритроциты формируют микровезикулы, чтобы удалить поврежденные компоненты клетки, такие как окисленный гемоглобин и поврежденные мембранные компоненты, и таким образом продлевают продолжительность своего функционирования. Выдвинуты две гипотезы образования микровезикул: программируемая клеточная гибель (эриптоз) и кластеризация белка полосы 3 в результате нарушения межклеточных взаимодействий. В процессе эриптоза повреждение гемоглобина и изменение путей фосфорилирования мембранных белков, прежде всего белка полосы 3, приводит к ослаблению прочных связей между липидным бислоем и цитоскелетом, что сопровождается трансформацией мембраны, образованием выпячиваний и превращением их в микровезикулы. Обнаружено, что образование микровезикул эритроцитами нарушено у пациентов, страдающих различными патологиями эритроцитов: серповидно-клеточной анемией, дефицитом глюкозо-6-дегидрогеназы, сфероцитозом, малярией. Исследования последнего десятилетия убеждают, что нарушение режима взаимодействия между мембраной и цитоскелетом, вероятно, является главным механизмом, поскольку подтверждается данными, полученными при исследовании структурных изменений эритроцитов донорских гемокомпонентов, хранившихся в условиях банка крови. В настоящее время широкое распространение получили работы по изучению влияния микровезикул на сохранность эритроцитсодержащих компонентов крови. Возобновлена дискуссия о взаимосвязи количества накопленных микровезикул в компонентах крови и эффективности донорских компонентов для пациентов при переливании в зависимости от срока хранения компонентов. Детализированные данные протеомного, липидомического и иммуногенного сравнения микровезикул, полученных из различных источников, являются убедительными в идентификации триггерных стимулов, вызывающих генерацию микровезикул. Выяснение вклада полученных из эритроцитов микровезикул в воспаление, тромбоз и аутоиммунные реакции подтверждает необходимость дальнейшего изучения механизмов и последствий генерации микровезикул эритроцитами донорских компонентов, используемых для трансфузионной медицины.

Об авторах

В И Ващенко

Военно-медицинская академия им. С.М. Кирова

Email: meda-nio@mil.ru
Санкт-Петербург

В Н Вильянинов

Военно-медицинская академия им. С.М. Кирова

Email: meda-nio@mil.ru
Санкт-Петербург

Л А Скрипай

Военно-медицинская академия им. С.М. Кирова

Email: meda-nio@mil.ru
Санкт-Петербург

Е Ф Сороколетова

Военно-медицинская академия им. С.М. Кирова

Email: meda-nio@mil.ru
Санкт-Петербург

Список литературы

  1. Ващенко, В.И. Эриптоз (квазиапоптоз) эритроцитов человека и его роль в лекарственной терапии / В.И. Ващенко, В.Н. Вильянинов // Обзоры клин. фарм. лекарст. терапии. - 2019. - № 3. - C. 5-38.
  2. Зубаиров, Д.М. Микровезикулы в крови. Функции и их роль в тромбообразовании / Д.М. Зубаиров, Л.Д. Зубаирова. - М.: ГЭОТАР-Медиа, 2009. - 168 c.
  3. Almizraq, R.J. Characteristics of extracellular vesicles in red blood concentrates change with storage time and blood manufacturing method / R.J. Almizraq [et al.] // Transfus. Med. Hemother. - 2018. - Vol. 45. - P. 185-193.
  4. Arashiki, N. Membrane peroxidation and methemoglobin formation are both necessary for band 3 clustering: mechanistic insights into human erythrocyte senescence / N. Arashiki [et al.] // Biochemistry. - 2013. - Vol. 52. - P. 5760-5769.
  5. Burnouf, T. An overview of the role of microparticles/microvesicles in blood components: Are they clinically or harmful? / T. Burnouf [et al.] // Transfus. Apher. Scien. - 2015. - Vol. 53. - P. 137-145.
  6. Ciana, A. Membrane remodelling and vesicle formation during ageing of human red blood cells / A. Ciana [et al.] // Cell. Physiol. Biochem. - 2017. - Vol. 42. - P. 1127-1138.
  7. Cluitmans, J.C. Red blood cell homeostasis: pharmacological interventions to explore biochemical, morphological and mechanical properties / J.C. Cluitmans [et al.] // Front. Mol. Biosci. - 2016. - Vol. 3. - P. 1-11.
  8. D’Alessandro, A. Omics markers of the red cell storage lesion and metabolic linkage / A. D’Alessandro [et al.] // Blood Transfus. - 2017. - Vol. 15. - P. 137-144.
  9. Dinkla, S. Inflammation-associated changes in lipid composition and the organization of the erythrocyte membrane / S. Dinkla [et al.] // BBA Clin. - 2016. - Vol. 5. - P. 186-192.
  10. Distler, J.H. Microparticles as mediators of cellular cross-talk in inflammatory disease / J.H. Distler [et al.] // Autoimmunity. - 2006. - Vol. 39. - P. 683-690.
  11. Ferru, E. Thalassemic erythrocytes release microparticles loaded with hemichromes by redox activation of p72Syk kinase / E. Ferru [et al.] // Haematologica. - 2014. - Vol. 99. - P. 570-578.
  12. Harisa, G.I. Erythrocyte nanovesicles: biogenesis, biological roles and therapeutic approach erythrocyte nanovesicles / G.I. Harisa [et al.] // Saudi Pharm. J. - 2017. - Vol. 25. - P. 8-17.
  13. Koch, C.G. Real age: red blood cell aging during storage / C.G. Koch [et al.] // Ann. Thorac. Surg. - 2019. - Vol. 107. - P. 973-980.
  14. Kostova, E.B. Identification of signalling cascades involved in red blood cell shrinkage and vesiculation / E.B. Kostova [et al.] // Biosci. Rep. - 2015. - Vol. 35. - P. 1-16.
  15. Leal, J.K.F. Red blood cell homeostasis: mechanisms and effects of microvesicle generation in health and disease / J.K.F. Leal [et al.] // Front Physiol. - 2018. - Vol. 9. - P. 1-7.
  16. Luten, M. Survival of red blood cells after transfusion: a comparison between red cells concentrates of different storage periods / M. Luten [et al.] // Transfusion. - 2008. - Vol. 48. - P. 1478-1485.
  17. Qadri, S.M. Eriptosis in health and disease: A paradigm shift towards understanding the (patho) physiological implications of programmed cell death of erythrocytes / S.M. Qadri [et al.] // Blood Rev. - 2017. - Vol. 31. - P. 349-361.
  18. Roussel, C. Spherocytic shift of red blood cells during storage provides a quantitative whole cell-based marker of the storage lesion / C. Roussel [et al.] // Transfusion. - 2017. - Vol. 57. - P. 1007-1018.
  19. Rubin, O. Red blood cell-derived microparticles isolated from blood units initiate and propagate thrombin generation / O. Rubin [et al.] // Transfusion. - 2013. - Vol. 53. - P. 1744-1754.
  20. Salzer, U. Vesicles generated during storage of red cells are rich in the lipid raft marker stomatin / U. Salzer [et al.] // Transfusion. - 2008. - Vol. 48. - P. 451-462.
  21. Spinella, P.C. Duration of red blood cell storage is associated with increased incidence of deep vein thrombosis and in hospital mortality in patients with traumatic injuries / P.C. Spinella [et al.] // Crit. Care. - 2009. - Vol. 13. - P. 1-11.
  22. Tissot, J.D. The storage lesion: From past to future / J.D. Tissot [et al.] // Transfus. Clin. Biol. - 2017. - Vol. 24. - P. 277-284.
  23. Willekens, F.L. Erythrocyte vesiculation: a self-protective mechanism? / F.L. Willekens [et al.] // Br. J. Haematol. - 2008. - Vol. 141. - P. 549-556.
  24. Wither, M. Hemoglobin oxidation at functional amino acid residues during routine storage of red blood cells / M. Wither [et al.] // Transfusion. - 2016. - Vol. 56. - P. 421-426.
  25. Zimring, J.C. Established and theoretical factors to consider in assessing the red cell storage lesion / J.C. Zimring // Blood. - 2015. - Vol. 125. - P. 2185-2190.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Ващенко В.И., Вильянинов В.Н., Скрипай Л.А., Сороколетова Е.Ф., 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).