КАТАЛИЗАТОРЫ ЭЛЕКТРОВОССТАНОВЛЕНИЯ КИСЛОРОДА В ЩЕЛОЧНОЙ СРЕДЕ НА ОСНОВЕ УГЛЕРОДНЫХ НАНОТРУБОК, МОДИФИЦИРОВАННЫХ МОЧЕВИНОЙ, ФТАЛОЦИАНИНАМИ ЖЕЛЕЗА, КОБАЛЬТА И ПАЛЛАДИЕМ
- Авторы: Виноградов К.Ю.1, Давыдов В.М.1, Токранова Е.О.1, Шафигулин Р.В.1, Востриков С.В.1,2, Буланова А.В.1
-
Учреждения:
- Самарский национальный исследовательский университет имени академика С. П. Королева
- Самарский государственный технический университет
- Выпуск: Том 25, № 3 (2025)
- Страницы: 148-160
- Раздел: Статьи
- URL: https://ogarev-online.ru/1608-4039/article/view/381301
- DOI: https://doi.org/10.18500/1608-4039-2025-25-3-148-160
- EDN: https://elibrary.ru/YSFGDF
- ID: 381301
Цитировать
Полный текст
Аннотация
Об авторах
Кирилл Юрьевич Виноградов
Самарский национальный исследовательский университет имени академика С. П. Королева
ORCID iD: 0000-0001-5576-6247
Московское шоссе, д. 34
Владислав Михайлович Давыдов
Самарский национальный исследовательский университет имени академика С. П. КоролеваМосковское шоссе, д. 34
Елена Олеговна Токранова
Самарский национальный исследовательский университет имени академика С. П. Королева
ORCID iD: 0000-0002-0568-1509
Московское шоссе, д. 34
Роман Владимирович Шафигулин
Самарский национальный исследовательский университет имени академика С. П. Королева
ORCID iD: 0000-0001-9981-1249
Московское шоссе, д. 34
Сергей Владимирович Востриков
Самарский национальный исследовательский университет имени академика С. П. Королева; Самарский государственный технический университет
ORCID iD: 0000-0003-1102-473X
Московское шоссе, д. 34
Анджела Владимировна Буланова
Самарский национальный исследовательский университет имени академика С. П. Королева
ORCID iD: 0000-0001-6243-8444
Московское шоссе, д. 34
Список литературы
- Jiang Y., Yang L., Sun T., Zhao J., Lyu Z., Zhuo O., Wang X., Wu Q., Ma J., Hu Z. Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catalysis, 2015, vol. 5, iss. 11, pp. 6707– 6712. https://doi.org/10.1021/acscatal.5b01835
- Yan X., Jia Y., Yao X. Defects on carbons for electrocatalytic oxygen reduction. Chemical Society Reviews, 2018, vol. 47, iss. 20, pp. 7628–7658. https://doi.org/10.1039/c7cs00690j
- Singh S. K., Takeyasu K., Nakamura J. Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials. Advanced Materials, 2019, vol. 31, iss. 13, art. e1804297. https://doi.org/10.1002/adma.201804297
- Lu H. J., Li Y., Zhang L. Q., Li H. N., Zhou X., Liu A. R., Zhang Y. J., Liu S. Q. Synthesis of B-doped hollow carbon spheres as efficient non-metal catalyst for oxygen reduction reaction. RSC Advances, 2015, vol. 5, iss. 64, pp. 52126–52131. https://doi.org/10.1039/c5ra07909h
- Sun Y., Wu J., Tian J., Jin C., Yang R. Sulfurdoped carbon spheres as efficient metal-free electrocatalysts for oxygen reduction reaction. Electrochimica Acta, 2015, vol. 178, pp. 806–812. https://doi.org/10.1016/j.electacta.2015.08.059
- Wu J., Yang Z., Sun Q., Li X., Strasser P., Yang R. Synthesis and electrocatalytic activity of phosphorus-doped carbon xerogel for oxygen reduction. Electrochimica Acta, 2014, vol. 127, pp. 53–60. https://doi.org/10.1016/j.electacta.2014.02.016
- Wu B., Meng H., Morales D. M., Zeng F., Zhu J., Wang B., Risch M., Xu Z. J., Petit T. Nitrogen‐rich carbonaceous materials for advanced oxygen electrocatalysis: Synthesis, characterization, and activity of nitrogen sites. Advanced Functional Materials, 2022, vol. 32, iss. 31, art. 2204137. https://doi.org/10.1002/adfm.202204137
- Guo K., Li N., Bao L., Zhang P., Lu X. Intrinsic carbon structural imperfections for enhancing energy conversion electrocatalysts. Chemical Engineering Journal, 2023, vol. 466, art. 143060. https://doi.org/10.1016/j.cej.2023.143060
- Wang T., Chutia A., Brett D. J., Shearing P. R., He G., Chai G., Parkin I. P. Palladium alloys used as electrocatalysts for the oxygen reduction reaction. Energy & Environmental Science, 2021, vol. 14, iss. 5, pp. 2639–2669. https://doi.org/10.1039/d0ee03915b
- Jiang S., Zhu C., Dong S. Cobalt and nitrogencofunctionalized graphene as a durable non-precious metal catalyst with enhanced ORR activity. Journal of Materials Chemistry. A, 2013, vol. 1, iss. 11, pp. 3593– 3599. https://doi.org/10.1039/c3ta01682j
- Zhang Z., Sun J., Wang F., Dai L. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angewandte Chemie, 2018, vol. 130, iss. 29, pp. 9176–9181. https://doi.org/10.1002/ange.201804958
- Li X., Wang Z., Su Z., Zhao Z., Cai Q., Zhao J. Phthalocyanine-supported single-atom catalysts as a promising bifunctional electrocatalyst for ORR/OER: A computational study. ChemPhysMater, 2022, vol. 1, iss. 3, pp. 237–245. https://doi.org/10.1016/j.chphma.2022.04.002
- Liang Z., Wang H. Y., Zheng H., Zhang W., Cao R. Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chemical Society Reviews, 2021, vol. 50, iss. 4, pp. 2540–2581. https://doi.org/10.1039/d0cs01482f
- Mei Z. Y., Cai S., Zhao G., Zou X., Fu Y., Jiang J., An Q., Li M., Liu T., Guo H. Boosting the ORR active and Zn-air battery performance through ameliorating the coordination environment of iron phthalocyanine. Chemical Engineering Journal, 2022, vol. 430, art. 132691. https://doi.org/10.1016/j.cej.2021.132691
- Hebié S., Bayo-Bangoura M., Bayo K., Servat K., Morais C., Napporn T. W., Boniface Kokoh K. Electrocatalytic activity of carbon-supported metallophthalocyanine catalysts toward oxygen reduction reaction in alkaline solution. Journal of Solid State Electrochemistry, 2016, vol. 20, iss. 4, pp. 931–942. https://doi.org/10.1007/s10008-015-2932-6
- Thommes M., Kaneko K., Neimark A. V., Olivier J. P., Rodriguez-Reinoso F., Rouquerol J., Sing K. S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015, vol. 87, iss. 9-10, pp. 1051–1069. https://doi.org/10.1515/pac-2014-1117
- Sadezky A., Muckenhuber H., Grothe H., Niessner R., Pöschl U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon, 2005, vol. 43, iss. 8, pp. 1731–1742. https://doi.org/10.1016/j.carbon.2005.02.018
- Zhang H. B., Lin G. D., Zhou Z. H., Dong X., Chen T. Raman spectra of MWCNTs and MWCNTbased H2-adsorbing system. Carbon, 2002, vol. 40, iss. 13, pp. 2429–2436. https://doi.org/10.1016/s0008-6223(02)00148-3
- Zhang J. X., Yang X. L., Shao H. F., Tseng C. C., Wang D. S., Tian S. S., Hu W. J., Jing C., Tian J. N., Zhao Y. C. Microwave-assisted synthesis of pd oxide-rich pd particles on nitrogen/sulfur co-doped graphene with remarkably enhanced ethanol electrooxidation. Fuel Cells, 2017, vol. 17, iss. 1, pp. 115–122. https://doi.org/10.1002/fuce.201600153
- Zhu M., Diao G. Synthesis of porous Fe3O4 nanospheres and its application for the catalytic degradation of xylenol orange. The Journal of Physical Chemistry C, 2011, vol. 115, iss. 39, pp. 18923–18934. https://doi.org/10.1021/jp200418j
- Buğday N., Altin S., Yaşar S. Porous carbon‐supported CoPd nanoparticles: High‐performance reduction reaction of nitrophenol. Applied Organometallic Chemistry, 2022, vol. 36, iss. 8, art. e6797. https://doi.org/10.1002/aoc.6797
- Ma M., Zhu W., Shao Q., Shi H., Liao F., Shao C., Shao M. Palladium–copper bimetallic nanoparticles loaded on carbon black for oxygen reduction and zinc–air batteries. ACS Applied Nano Materials, 2021, vol. 4, iss. 2, pp. 1478–1484. https://doi.org/10.1021/acsanm.0c02997
Дополнительные файлы


