ГИДРОЛИТИЧЕСКАЯ И ОКИСЛИТЕЛЬНАЯ УСТОЙЧИВОСТЬ ПРЕКУРСОРОВ ДЛЯ СИНТЕЗА ТВЕРДЫХ СУЛЬФИДНЫХ ЭЛЕКТРОЛИТОВ

Обложка

Цитировать

Полный текст

Аннотация

Гравиметрическим методом исследована окислительная и гидролитическая стабильность прекурсоров для синтеза твердых сульфидных электролитов – Li2S и P2S5 – в воздухе с различным содержанием воды, а также сухого аргона. Установлено, что содержание воды в воздухе существенно влияет на стабильность материалов. Li2S и P2S5 нестабильны даже в воздухе с содержанием воды 5 ppm. Более того, было установлено, что окислительно-гидролитическая стабильность Li2S зависит от наличия примесей.

Об авторах

Юлия Алексеевна Пилюгина

Уфимский Институт химии Уфимского федерального исследовательского центра РАН

ORCID iD: 0000-0001-8881-2545
Scopus Author ID: 57226310435
ResearcherId: GZG-3027-2022
Россия, 450054, г. Уфа, проспект Октября, д. 69

Елена Владимировна Кузьмина

Уфимский Институт химии Уфимского федерального исследовательского центра РАН

ORCID iD: 0000-0002-3758-4762
Scopus Author ID: 6701413998
ResearcherId: A-9687-2011
Россия, 450054, г. Уфа, проспект Октября, д. 69

Владимир Сергеевич Колосницын

Институт органической химии Уфимского научного центра РАН

ORCID iD: 0000-0003-1318-6943
450054, г. Уфа, пр-т Октября 71

Список литературы

  1. Huang H., Liu C., Liu Z., Wu Y., Liu Y., Fan J., Zhang G., Xiong P., Zhu J. Functional inorganic additives in composite solid-state electrolytes for flexible lithium metal batteries. Adv. Powder Mater., 2024, vol. 3, no. 1, art. 100141. https://doi.org/10.1016/j.apmate.2023.100141
  2. Frenck L., Sethi G. K., Maslyn J. A., Balsara N. P. Factors that control the formation of dendrites and other morphologies on lithium metal anodes. Front. Energy Res., 2019, vol. 7, art. 115. https://doi.org/10.3389/fenrg.2019.00115
  3. Yang H., Wu N. Ionic conductivity and ion transport mechanisms of solid‐state lithium‐ion battery electrolytes: A review. Energy Sci. Eng., 2022, vol. 10, no. 5, pp. 1643–1671. https://doi.org/10.1002/ese3.1163
  4. Yersak T. A., Zhang Y., Hao F., Cai M. Moisture stability of sulfide solid-state electrolytes. Front. Energy Res., 2022, vol. 10, art. 882508. https://doi.org/10.3389/fenrg.2022.882508
  5. Liang J., Li X., Wang C., Kim J. T., Yang R., Wang J., Sun X. Current status and future directions in environmental stability of sulfide solid-state electrolytes for all-solid-state batteries. Energy Mater. Adv., 2023, vol. 4, art. 0021, https://doi.org/10.34133/energymatadv.0021
  6. Yang S., Hu X., Xu S., Han A., Zhang X., Zhang N., Chen X., Tian R., Song D., Yang Y. Synthesis of deliquescent lithium sulfide in air. ACS Appl. Mater. Interfaces, 2023, vol. 15, no. 34, pp. 40633–40647. https://doi.org/10.1021/acsami.3c08506
  7. Muramatsu H., Hayashi A., Ohtomo T., Hama S., Tatsumisago M. Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ion., 2011, vol. 182, no. 1, pp. 116–119. https://doi.org/10.1016/j.ssi.2010.10.013
  8. Lu P., Wu D., Chen L., Li H., Wu F. Air Stability of Solid-State Sulfide Batteries and Electrolytes. Electrochem. Energy Rev., 2022, vol. 5, no. 3, pp. 1–46. https://doi.org/10.1007/s41918-022-00149-3
  9. Nikodimos Y., Su W.-N., Bezabh H. K., Tsai M.- C., Yang C.-C., Hwang B. J. Effect of selected dopants on conductivity and moisture stability of Li3PS4 sulfide solid electrolyte: a first-principles study. Mater. Today Chem., 2022, vol. 24, art. 100837. https://doi.org/10.1016/j.mtchem.2022.100837
  10. Pilyugina Yu. A., Mishinkin V. Y., Kuzmina E. V., Li B. Q., Zhang Q., Kolosnitsyn V. S. The sulfide solid electrolyte synthesized via carbothermal reduction of lithium sulfate for solid-state lithiumsulfur batteries. Inorg. Chem. Commun., 2025, vol. 174, art. 113926. https://doi.org/10.1016/j.inoche.2025.113926
  11. Karaseva E. V., Sheina L. V., Kolosnitsyn V. S. Synthesis of lithium sulfide by carbothermal reduction of lithium sulfate with petroleum coke. Russ. J. Appl. Chem., 2021, vol. 94, no. 1, pp. 1–8. https://doi.org/10.1134/s1070427221010018
  12. Altomare A., Corriero N., Cuocci C., Falcicchio A., Moliterni A., Rizzi R. QUALX2.0: A qualitative phase analysis software using the freely available database POW_COD. J. Appl. Crystallogr., 2015, vol. 48, no. 2, pp. 598–603. https://doi.org/10.1107/s1600576715002319
  13. Śmiechowski M., Gojło E., Stangret J. Systematic study of hydration patterns of phosphoric(V) acid and its mono-, di-, and tripotassium salts in aqueous solution. J. Phys. Chem. B, 2009, vol. 113, no. 21, pp. 7650–7661. https://doi.org/10.1021/jp810195h

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).