Hydrolytic and oxidative stability of precursors for the synthesis of sulfide solid electrolytes

Cover Page

Cite item

Full Text

Abstract

The oxidative and hydrolytic stability of the precursors Li2S and P2S5 for the synthesis of sulfide solid electrolytes was studied using gravimetric analysis. The study was conducted in air with different water content and dry argon. It was established that the water content in air significantly affects the stability of materials. Li2S and P2S5 are unstable even in air with the water content of 5 ppm. Moreover, it was found that the oxidative-hydrolytic stability of Li2S depends on the presence of impurities.

About the authors

Yulia Alexeevna Pilyugina

Ufa Institute of Chemistry of the Russian Academy of Sciences

ORCID iD: 0000-0001-8881-2545
Scopus Author ID: 57226310435
ResearcherId: GZG-3027-2022
69 Prospect Oktyabrya, Ufa 450054, Russia

Elena Vladimirovna Kuzmina

Ufa Institute of Chemistry of the Russian Academy of Sciences

ORCID iD: 0000-0002-3758-4762
Scopus Author ID: 6701413998
ResearcherId: A-9687-2011
69 Prospect Oktyabrya, Ufa 450054, Russia

Vladimir Sergeevich Kolosnitsyn

Institute of Organic Chemistry of the Ufa RAS Scientific Center

ORCID iD: 0000-0003-1318-6943
71, Oktyabrya Ave, Ufa, 450054

References

  1. Huang H., Liu C., Liu Z., Wu Y., Liu Y., Fan J., Zhang G., Xiong P., Zhu J. Functional inorganic additives in composite solid-state electrolytes for flexible lithium metal batteries. Adv. Powder Mater., 2024, vol. 3, no. 1, art. 100141. https://doi.org/10.1016/j.apmate.2023.100141
  2. Frenck L., Sethi G. K., Maslyn J. A., Balsara N. P. Factors that control the formation of dendrites and other morphologies on lithium metal anodes. Front. Energy Res., 2019, vol. 7, art. 115. https://doi.org/10.3389/fenrg.2019.00115
  3. Yang H., Wu N. Ionic conductivity and ion transport mechanisms of solid‐state lithium‐ion battery electrolytes: A review. Energy Sci. Eng., 2022, vol. 10, no. 5, pp. 1643–1671. https://doi.org/10.1002/ese3.1163
  4. Yersak T. A., Zhang Y., Hao F., Cai M. Moisture stability of sulfide solid-state electrolytes. Front. Energy Res., 2022, vol. 10, art. 882508. https://doi.org/10.3389/fenrg.2022.882508
  5. Liang J., Li X., Wang C., Kim J. T., Yang R., Wang J., Sun X. Current status and future directions in environmental stability of sulfide solid-state electrolytes for all-solid-state batteries. Energy Mater. Adv., 2023, vol. 4, art. 0021, https://doi.org/10.34133/energymatadv.0021
  6. Yang S., Hu X., Xu S., Han A., Zhang X., Zhang N., Chen X., Tian R., Song D., Yang Y. Synthesis of deliquescent lithium sulfide in air. ACS Appl. Mater. Interfaces, 2023, vol. 15, no. 34, pp. 40633–40647. https://doi.org/10.1021/acsami.3c08506
  7. Muramatsu H., Hayashi A., Ohtomo T., Hama S., Tatsumisago M. Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ion., 2011, vol. 182, no. 1, pp. 116–119. https://doi.org/10.1016/j.ssi.2010.10.013
  8. Lu P., Wu D., Chen L., Li H., Wu F. Air Stability of Solid-State Sulfide Batteries and Electrolytes. Electrochem. Energy Rev., 2022, vol. 5, no. 3, pp. 1–46. https://doi.org/10.1007/s41918-022-00149-3
  9. Nikodimos Y., Su W.-N., Bezabh H. K., Tsai M.- C., Yang C.-C., Hwang B. J. Effect of selected dopants on conductivity and moisture stability of Li3PS4 sulfide solid electrolyte: a first-principles study. Mater. Today Chem., 2022, vol. 24, art. 100837. https://doi.org/10.1016/j.mtchem.2022.100837
  10. Pilyugina Yu. A., Mishinkin V. Y., Kuzmina E. V., Li B. Q., Zhang Q., Kolosnitsyn V. S. The sulfide solid electrolyte synthesized via carbothermal reduction of lithium sulfate for solid-state lithiumsulfur batteries. Inorg. Chem. Commun., 2025, vol. 174, art. 113926. https://doi.org/10.1016/j.inoche.2025.113926
  11. Karaseva E. V., Sheina L. V., Kolosnitsyn V. S. Synthesis of lithium sulfide by carbothermal reduction of lithium sulfate with petroleum coke. Russ. J. Appl. Chem., 2021, vol. 94, no. 1, pp. 1–8. https://doi.org/10.1134/s1070427221010018
  12. Altomare A., Corriero N., Cuocci C., Falcicchio A., Moliterni A., Rizzi R. QUALX2.0: A qualitative phase analysis software using the freely available database POW_COD. J. Appl. Crystallogr., 2015, vol. 48, no. 2, pp. 598–603. https://doi.org/10.1107/s1600576715002319
  13. Śmiechowski M., Gojło E., Stangret J. Systematic study of hydration patterns of phosphoric(V) acid and its mono-, di-, and tripotassium salts in aqueous solution. J. Phys. Chem. B, 2009, vol. 113, no. 21, pp. 7650–7661. https://doi.org/10.1021/jp810195h

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).