Functional and analytic properties of a class of mappings in quasi-conformal analysis
- 作者: Vodopyanov S.K.1, Tomilov A.O.1
-
隶属关系:
- Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
- 期: 卷 85, 编号 5 (2021)
- 页面: 58-109
- 栏目: Articles
- URL: https://ogarev-online.ru/1607-0046/article/view/142272
- DOI: https://doi.org/10.4213/im9082
- ID: 142272
如何引用文章
详细
We define a two-index scale $\mathcal Q_{q,p}$, $n-1< q\leq p<\infty$, of homeomorphisms of spatial domains in $\mathbb R^n$, the geometric description of which is determined by the control of the behaviour of the $q$-capacity of condensers in the target space in terms of the weighted $p$-capacity of condensers in the source space. We obtain an equivalent functional and analytic description of $\mathcal Q_{q,p}$ based on the properties of the composition operator (from weighted Sobolev spaces to non-weighted ones) induced by the inverses of the mappings in $\mathcal Q_{q,p}$.
When $q=p=n$, the class of mappings $\mathcal Q_{n,n}$ coincides with the set of so-called $Q$-homeomorphisms which have been studied extensively in the last 25 years.
作者简介
Sergei Vodopyanov
Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: vodopis@math.nsc.ru
Doctor of physico-mathematical sciences, Professor
Aleksei Tomilov
Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Email: atomilov115@mail.ru
参考
- С. Л. Соболев, Некоторые применения функционального анализа в математической физике, 3-е изд., перераб. и доп., Наука, М., 1988, 334 с.
- В. Г. Мазья, Классы множеств и теоремы вложения функциональных классов. Некоторые проблемы теории эллиптических операторов, Автореферат дисс. … канд. физ.-матем. наук, Изд-во Ленингр. ун-та, Л., 1961
- Ю. Г. Решетняк, Пространственные отображения с ограниченным искажением, Наука, Новосибирск, 1982, 286 с.
- G. D. Mostow, “Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms”, Inst. Hautes Etudes Sci. Publ. Math., 34:1 (1968), 53–104
- J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer–Verlag, Berlin, 1971, xiv+144 pp.
- F. W. Gehring, “Lipschitz mappings and $p$-capacity of rings in $n$-space”, Advances in the theory of Riemann surfaces (Stony Brook, NY, 1969), Ann. of Math. Studies, 66, Princeton Univ. Press, Princeton, NJ, 1971, 175–193
- С. К. Водопьянов, В. М. Гольдштейн, “Структурные изоморфизмы пространств $W_n^1$ и квазиконформные отображения”, Сиб. матем. журн., 16:2 (1975), 224–246
- H. M. Reimann, “Über harmonische Kapazität und quasikonforme Abbildungen in Raum”, Comment. Math. Helv., 44 (1969), 284–307
- J. Lelong-Ferrand, “Etude d'une classe d'applications liees à des homomorphismes d'algebres de fonctions, et generalisant les quasi conformes”, Duke Math. J., 40 (1973), 163–186
- С. П. Пономарев, “$N^{-1}$-свойство отображений и условие $(N)$ Лузина”, Матем. заметки, 58:3 (1995), 411–418
- С. К. Водопьянов, Формула Тейлора и функциональные пространства, Учебное пособие, НГУ, Новосибирск, 1988, 96 с.
- С. К. Водопьянов, “Отображения однородных групп и вложения функциональных пространств”, Сиб. матем. журн., 30:5 (1989), 25–41
- С. К. Водопьянов, “Весовые пространства Соболева и теория отображений”, Всесоюзная математическая школа “Теория потенциала”, Тез. докл. (Кацивели, 1991), Ин-т матем. АН УСCP, Киев, 1991, 7
- С. К. Водопьянов, Геометрические аспекты пространств обобщенно-дифференцируемых функций, Автореферат дисс. … докт. физ.-матем. наук, Изд-во Ин-та матем. им. С. Л. Соболева СО РАН, Новосибирск, 1992, 38 с.
- P. Koskela, P. Pankka, Yi Ru-Ya Zhang, Ahlfors reflection theorem for $p$-morphisms
- С. Сакс, Теория интеграла, ИЛ, М., 1949, 496 с.
- П. Халмош, Теория меры, ИЛ, М., 1953, 291 с.
- T. Rado, P. V. Reichelderfer, Continuous transformations in analysis. With an introduction to algebraic topology, Grundlehren Math. Wiss., LXXV, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1955, vii+442 pp.
- Г. Федерер, Геометрическая теория меры, Наука, М., 1987, 760 с.
- V. Gol'dshtein, L. Gurov, A. Romanov, “Homeomorphisms that induce monomorphisms of Sobolev spaces”, Israel J. Math., 91:1-3 (1995), 31–60
- M. Troyanov, S. Vodop'yanov, “Liouville type theorems for mappings with bounded (co)-distortion”, Ann. Inst. Fourier (Grenoble), 52:6 (2002), 1753–1784
- В. Г. Мазья, Пространства С. Л. Соболева, Изд-во Ленингр. ун-та, Л., 1985, 416 с.
- J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1993, vi+363 pp.
- А. Д. Ухлов, “Отображения, порождающие вложения пространств Соболева”, Сиб. матем. журн., 34:1 (1993), 185–192
- С. К. Водопьянов, А. Д. Ухлов, “Пространства Соболева и $(P,Q)$-квазиконформные отображения групп Карно”, Сиб. матем. журн., 39:4 (1998), 776–795
- С. К. Водопьянов, А. Д. Ухлов, “Операторы суперпозиции в пространствах Соболева”, Изв. вузов. Матем., 2002, № 10, 11–33
- С. K. Водопьянов, “О регулярности отображений, обратных к соболевским”, Матем. сб., 203:10 (2012), 3–32
- A. Molchanova, S. Vodopyanov, “Injectivity almost everywhere and mappings with finite distortion in nonlinear elasticity”, Calc. Var. Partial Differential Equations, 59:1 (2020), 17, 25 pp.
- O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in modern mapping theory, Springer Monogr. Math., Springer, New York, 2009, xii+367 pp.
- С. К. Водопьянов, “Операторы композиции весовых пространства Соболева и теория $mathscr Q_p$-гомеоморфизмов”, Докл. РАН, 494:5 (2020), 21–25
- С. К. Водопьянов, А. Д. Ухлов, “Операторы суперпозиции в пространствах Лебега и дифференцируемость квазиаддитивных функций множества”, Владикавк. матем. журн., 4:1 (2002), 11–33
- С. К. Водопьянов, “О регулярности отображений, обратных к соболевским, и теория $mathcal Q_{q,p}$-гомеоморфизмов”, Сиб. матем. журн., 61:6 (2020), 1257–1299
- Ю. Г Решетняк, “Некоторые геометрические свойства функций и отображений с обобщенными производными”, Сиб. матем. журн., 7:4 (1966), 886–919
- B. Bojarski, T. Iwaniec, “Analytical foundations of the theory of quasiconformal mappings in ${R}^{n}$”, Ann. Acad. Sci. Fenn. Ser. A I Math., 8:2 (1983), 257–324
- J. Maly, O. Martio, “Lusin's condition $(N)$ and mappings of the class $W^{1, n}$”, J. Reine Angew. Math., 1995:458 (1995), 19–36
- С. К. Водопьянов, “О дифференцируемости отображений классов Соболева на группе Карно”, Матем. сб., 194:6 (2003), 67–86
- Л. К. Эванс, Р. Ф. Гариепи, Теория меры и тонкие свойства функций, Научная книга, Новосибирск, 2002, 206 с.
- P. Hajlasz, “Change of variables formula under minimal assumptions”, Colloq. Math., 64:1 (1993), 93–101
- С. К. Водопьянов, “О дифференцируемости отображений класса Соболева $W^1_{n-1}$ с условиями на функцию искажения”, Сиб. матем. журн., 59:6 (2018), 1240–1267
- G. B. Folland, E. M. Stein, Hardy spaces on homogeneous groups, Math. Notes, 28, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1982, xii+285 pp.
- И. Стейн, Сингулярные интегралы и дифференциальные свойства функций, Мир, М., 1973, 342 с.
- Ю. А. Брудный, Б. Д. Котляр, “Одна задача комбинаторной геометрии”, Сиб. матем. журн., 11:5 (1970), 1171–1173
- С. К. Водопьянов, “Об аналитических и геометрических свойствах отображений в теории $mathscr Q_{q,p}$-гомеоморфизмов”, Матем. заметки, 108:6 (2020), 925–929
- С. К. Водопьянов, “Основы квазиконформного анализа двухиндексной шкалы пространственных отображений”, Сиб. матем. журн., 59:5 (2018), 1020–1056
- A. Н. Байкин, С. К. Водопьянов, “Емкостные оценки, теоремы типа Лиувилля и об устранении особенностей для отображений с ограниченным $(p,q)$-искажением”, Сиб. матем. журн., 56:2 (2015), 290–321
- A. Ukhlov, S. K. Vodopyanov, “Mappings associated with weighted Sobolev spaces”, Complex analysis and dynamical systems III, Contemp. Math., 455, Israel Math. Conf. Proc., Amer. Math. Soc., Providence, RI, 2008, 369–382
- С. К. Водопьянов, “Пространства дифференциальных форм и отображения с контролируемым искажением”, Изв. РАН. Сер. матем., 74:4 (2010), 5–32
- В. И. Кругликов, “Емкости конденсаторов и пространственные отображения, квазиконформные в среднем”, Матем. сб., 130(172):2(6) (1986), 185–206
- С. К. Водопьянов, “Об эквивалентности двух подходов к задачам квазиконформного анализа”, Сиб. матем. журн., 62:5 (2021) (в печати)
- R. R. Salimov, E. A. Sevost'yanov, “$ACL$ and differentiability of open discrete ring $(p, Q)$-mappings”, Mat. Stud., 35:1 (2011), 28–36
- В. И. Рязанов, Е. А. Севостьянов, “Равностепенная непрерывность квазиконформных в среднем отображений”, Сиб. матем. журн., 52:3 (2011), 665–679
- Р. Р. Салимов, “Абсолютная непрерывность на линиях и дифференцируемость одного обобщения квазиконформных отображений”, Изв. РАН. Сер. матем, 72:5 (2008), 141–148
- R. Salimov, “$ACL$ and differentiability of $Q$-homeomorphisms”, Ann. Acad. Sci. Fenn. Math., 33:1 (2008), 295–301
- Р. Р. Салимов, Е. А. Севостьянов, “Теория кольцевых $Q$-отображений в геометрической теории функций”, Матем. сб., 201:6 (2010), 131–158
- E. A. Sevost'yanov, S. A. Skvortsov, On behavior of homeomorphisms with inverse modulus conditions
- Р. Р. Салимов, Е. А. Севостьянов, “О некоторых локальных свойствах пространственных обобщенных квазиизометрий”, Матем. заметки, 101:4 (2017), 594–610
- R. Salimov, “On $Q$-homeomorphisms with respect to $p$-modulus”, Ann. Univ. Buchar. Math. Ser., 2(LX):2 (2011), 207–213
- С. К. Водопьянов, “Монотонные функции и квазиконформные отображения на группах Карно”, Сиб. матем. журн., 37:6 (1996), 1269–1295
补充文件
