Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 85, № 5 (2021)

Обложка

Весь выпуск

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Статьи

Владимир Леонидович Попов (поздравление)

- -.
Известия Российской академии наук. Серия математическая. 2021;85(5):3-3
pages 3-3 views

Конструкция Кальдерона для пары глобальных пространств Морри

Бережной Е.И.

Аннотация

Благодаря новому подходу показано, что конструкция Кальдерона для пары глобальных пространств Морри будет совпадать с пространством Морри с соответствующими параметрами только при очень жестких условиях на пары идеальных пространств, являющихся параметрами для исходных пространств Морри. Для классических примеров глобальных пространств Морри доказано, что эти жесткие условия являются необходимыми и достаточными. Исходя из хорошо известной редукции, вычисление конструкции Кальдерона для пары глобальных пространств Морри позволило описать пространства метода комплексной интерполяции для этих пар пространств и получить новые интерполяционные теоремы для глобальных пространств Морри.Библиография: 20 наименований.
Известия Российской академии наук. Серия математическая. 2021;85(5):5-24
pages 5-24 views

О распределениях однородных и выпуклых функций от гауссовских случайных величин

Богачев В.И., Косов Е.Д., Попова С.Н.

Аннотация

Получены широкие условия, при которых распределения однородных функций от гауссовских и более общих случайных величин имеют ограниченные плотности или даже плотности ограниченной вариации и плотности с конечной информацией Фишера. Аналогичные результаты получены для выпуклых функций. Даны приложения к максимумам квадратичных форм.Библиография: 33 наименования.
Известия Российской академии наук. Серия математическая. 2021;85(5):25-57
pages 25-57 views

Функциональные и аналитические свойства одного класса отображений квазиконформного анализа

Водопьянов С.К., Томилов А.О.

Аннотация

Определена двухиндексная шкала $\mathcal Q_{q,p}$, $n-1< q\leq p<\infty$, гомеоморфизмов пространственных областей в $\mathbb R^n$, геометрическое описание которых обусловленно контролем поведения $q$-емкости конденсаторов в образе через весовую $p$-емкость конденсаторов в прообразе. Получено эквивалентное функциональное и аналитическое описание классов $\mathcal Q_{q,p}$, основанное на свойствах оператора композиции весового пространства Соболева в невесовое, индуцированного отображениями, обратными к отображениям класса $\mathcal Q_{q,p}$.
При $q=p=n$ класс отображений $\mathcal Q_{n,n}$ совпадает с совокупностью так называемых $Q$-гомеоморфизмов, активно исследуемых в течение последних 25 лет.
Библиография: 58 наименований.

Известия Российской академии наук. Серия математическая. 2021;85(5):58-109
pages 58-109 views

Сходимость к стационарным неравновесным состояниям для уравнений Клейна–Гордона

Дудникова Т.В.

Аннотация

Рассматриваются уравнения Клейна–Гордона с постоянными или переменными коэффициентами в $\mathbb{R}^d$, $d\ge2$, и изучается задача Коши со случайными начальными данными. Исследуется распределение $\mu_t$ случайного решения в моменты времени $t\in\mathbb{R}$. Доказывается сходимость корреляционных функций меры $\mu_t$ к пределу при $t\to\infty$. Выводятся явные формулы для предельных корреляционных функций и плотности потока энергии (в среднем) в терминах начальной ковариации. Кроме того, доказывается слабая сходимость $\mu_t$ к предельной мере при $t\to\infty$. Эти результаты применяются к случаю, когда начальная случайная функция в некоторых бесконечных “частях” пространства имеет гиббсовское распределение с различными температурами. В этом случае найдены состояния, в которых предельная плотность потока энергии не обращается в нуль. Таким образом, для изучаемой модели построен новый класс стационарных неравновесных состояний.Библиография: 20 наименований.
Известия Российской академии наук. Серия математическая. 2021;85(5):110-131
pages 110-131 views

Арифметика некоторых $\ell$-расширений с тремя точками ветвления. II

Кузьмин Л.В.

Аннотация

Пусть $\ell$ – простое регулярное нечетное число, $k$ – поле деления круга на $\ell$ частей и $K=k(\sqrt[\ell]{a})$, где $a$ – натуральное число. В предположении, что в $K_\infty/k_\infty$ разветвлены ровно три точки, не лежащие над $\ell$, мы продолжаем изучать структуру модуля Тэйта (модуля Ивасавы) $T_\ell(K_\infty)$ как модуля Галуа. Доказано, что в случае $\ell=3$, если $T_\ell(K_\infty)$ конечен, то $|T_\ell(K_\infty)|=\ell^r$ для некоторого натурального нечетного $r$. При тех же предположениях, если $\overline T_\ell(K_\infty)$ – группа Галуа максимального абелева неразветвленного $\ell$-расширения поля $K_\infty$, то ядро естественного эпиморфизма $\overline T_\ell(K_\infty)\to T_\ell (K_\infty)$ имеет порядок $9$. Получены некоторые другие результаты.Библиография: 4 наименования.
Известия Российской академии наук. Серия математическая. 2021;85(5):132-151
pages 132-151 views

О проблеме классификации многочленов $f$ с периодическим разложением $\sqrt{f}$ в непрерывную дробь в гиперэллиптических полях

Платонов В.П., Федоров Г.В.

Аннотация

Классическая проблема периодичности непрерывных дробей элементов гиперэллиптических полей имеет большую и глубокую историю. До сих пор эта проблема была далека от полного решения. Удивительный результат был получен в статье [1] для квадратичных расширений, определяемых кубическими многочленами с коэффициентами из поля рациональных чисел $\mathbb{Q}$: за исключением тривиальных случаев с точностью до эквивалентности существуют только три кубических многочлена над $\mathbb{Q}$, квадратный корень из которых разлагается в периодическую непрерывную дробь в поле формальных степенных рядов $\mathbb{Q}((x))$. С учетом результатов статьи [1] в этой статье полностью решена проблема классификации многочленов $f$, с периодическим разложением $\sqrt{f}$ в непрерывную дробь для эллиптических полей с полем рациональных чисел в качестве поля констант.Библиография: 29 наименований.
Известия Российской академии наук. Серия математическая. 2021;85(5):152-189
pages 152-189 views

Точная область однолистности на классе голоморфных отображений круга в себя с внутренней и граничной неподвижными точками

Солодов А.П.

Аннотация

Рассматривается задача выделения областей однолистности на классах голоморфных отображений круга в себя. Э. Ландау в 1926 г. нашел точное значение радиуса круга однолистности на классе таких отображений с заданным значением производной во внутренней неподвижной точке. В. В. Горяйнов в 2017 г. обнаружил существование областей однолистности на классах голоморфных отображений круга в себя с внутренней и граничной неподвижными точками, имеющих ограничение на значение угловой производной в граничной неподвижной точке.Однако вопрос о нахождении неулучшаемых областей однолистности оставался открытым. В данной работе эта экстремальная задача решена полностью: найдена точная область однолистности на указанном классе голоморфных отображений круга в себя. Этот результат является усилением теоремы Ландау для функций соответствующего класса.Библиография: 33 наименования.
Известия Российской академии наук. Серия математическая. 2021;85(5):190-218
pages 190-218 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».