О проблеме классификации многочленов $f$ с периодическим разложением $\sqrt{f}$ в непрерывную дробь в гиперэллиптических полях

Обложка
  • Авторы: Платонов В.П.1,2, Федоров Г.В.3,1
  • Учреждения:
    1. Федеральный научный центр Научно-исследовательский институт системных исследований Российской академии наук
    2. Математический институт им. В.А. Стеклова Российской академии наук
    3. Московский государственный университет имени М. В. Ломоносова
  • Выпуск: Том 85, № 5 (2021)
  • Страницы: 152-189
  • Раздел: Статьи
  • URL: https://ogarev-online.ru/1607-0046/article/view/142277
  • DOI: https://doi.org/10.4213/im9098
  • ID: 142277

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Классическая проблема периодичности непрерывных дробей элементов гиперэллиптических полей имеет большую и глубокую историю. До сих пор эта проблема была далека от полного решения. Удивительный результат был получен в статье [1] для квадратичных расширений, определяемых кубическими многочленами с коэффициентами из поля рациональных чисел $\mathbb{Q}$: за исключением тривиальных случаев с точностью до эквивалентности существуют только три кубических многочлена над $\mathbb{Q}$, квадратный корень из которых разлагается в периодическую непрерывную дробь в поле формальных степенных рядов $\mathbb{Q}((x))$. С учетом результатов статьи [1] в этой статье полностью решена проблема классификации многочленов $f$, с периодическим разложением $\sqrt{f}$ в непрерывную дробь для эллиптических полей с полем рациональных чисел в качестве поля констант.Библиография: 29 наименований.

Об авторах

Владимир Петрович Платонов

Федеральный научный центр Научно-исследовательский институт системных исследований Российской академии наук; Математический институт им. В.А. Стеклова Российской академии наук

Email: platonov@mi-ras.ru
доктор физико-математических наук, профессор

Глеб Владимирович Федоров

Московский государственный университет имени М. В. Ломоносова; Федеральный научный центр Научно-исследовательский институт системных исследований Российской академии наук

Email: glebonyat@mail.ru
кандидат физико-математических наук, старший преподаватель

Список литературы

  1. В. П. Платонов, Г. В. Федоров, “О проблеме периодичности непрерывных дробей в гиперэллиптических полях”, Матем. сб., 209:4 (2018), 54–94
  2. E. Artin, “Quadratische Körper im Gebiete der höheren Kongruenzen. I”, Math. Z., 19:1 (1924), 153–206
  3. W. W. Adams, M. J. Razar, “Multiples of points on elliptic curves and continued fractions”, Proc. London Math. Soc. (3), 41:3 (1980), 481–498
  4. T. G. Berry, “On periodicity of continued fractions in hyperelliptic function fields”, Arch. Math. (Basel), 55:3 (1990), 259–266
  5. W. M. Schmidt, “On continued fractions and diophantine approximation in power series fields”, Acta Arith., 95:2 (2000), 139–166
  6. В. П. Платонов, “Теоретико-числовые свойства гиперэллиптических полей и проблема кручения в якобианах гиперэллиптических кривых над полем рациональных чисел”, УМН, 69:1(415) (2014), 3–38
  7. В. П. Платонов, “Арифметика квадратичных полей и кручение в якобианах”, Докл. РАН, 430:3 (2010), 318–320
  8. В. П. Платонов, М. М. Петрунин, “Группы $S$-единиц и проблема периодичности непрерывных дробей в гиперэллиптических полях”, Топология и физика, Сборник статей. К 80-летию со дня рождения академика Сергея Петровича Новикова, Труды МИАН, 302, МАИК «Наука/Интерпериодика», М., 2018, 354–376
  9. В. В. Беняш-Кривец, В. П. Платонов, “Группы $S$-единиц в гиперэллиптических полях и непрерывные дроби”, Матем. сб., 200:11 (2009), 15–44
  10. В. П. Платонов, Г. В. Федоров, “$S$-единицы и периодичность непрерывных дробей в гиперэллиптических полях”, Докл. РАН, 465:5 (2015), 537–541
  11. В. П. Платонов, В. С. Жгун, Г. В. Федоров, “Непрерывные дроби в гиперэллиптических полях и представление Мамфорда”, Докл. РАН, 471:6 (2016), 640–644
  12. В. П. Платонов, М. М. Петрунин, “$S$-единицы в гиперэллиптических полях и периодичность непрерывных дробей”, Докл. РАН, 470:3 (2016), 260–265
  13. Г. В. Федоров, “Об ограниченности длин периодов непрерывных дробей ключевых элементов гиперэллиптических полей над полем рациональных чисел”, Чебышевский сб., 20:4 (2019), 357–370
  14. В. П. Платонов, Г. В. Федоров, “О периодичности непрерывных дробей в эллиптических полях”, Докл. РАН, 475:2 (2017), 133–136
  15. D. S. Kubert, “Universal bounds on the torsion of elliptic curves”, Proc. London Math. Soc. (3), 33:2 (1976), 193–237
  16. В. П. Платонов, М. М. Петрунин, Ю. Н. Штейников, “О конечности числа эллиптических полей с заданными степенями $S$-единиц и периодическим разложением $sqrt{f}$”, Докл. РАН, 488:3 (2019), 237–242
  17. В. П. Платонов, Г. В. Федоров, “О периодичности непрерывных дробей в гиперэллиптических полях”, Докл. РАН, 474:5 (2017), 540–544
  18. A. J. van der Poorten, Xuan Chuong Tran, “Periodic continued fractions in elliptic function fields”, Algorithmic number theory (Sydney, 2002), Lecture Notes in Comput. Sci., 2369, Springer, Berlin, 2002, 390–404
  19. В. П. Платонов, Г. В. Федоров, “Критерий периодичности непрерывных дробей ключевых элементов гиперэллиптических полей”, Чебышевский сб., 20:1 (2019), 248–260
  20. Г. В. Федоров, “О длине периода функциональной непрерывной дроби над числовым полем”, Докл. РАН. Мат. информ. проц. упр., 495:1 (2020), 78–83
  21. В. П. Платонов, Г. В. Федоров, “О проблеме классификации периодических непрерывных дробей в гиперэллиптических полях”, УМН, 75:4(454) (2020), 211–212
  22. В. П. Платонов, В. С. Жгун, М. М. Петрунин, “О проблеме периодичности разложений в непрерывную дробь $sqrt{f}$ для кубических многочленов над числовыми полями”, Докл. РАН. Мат. информ. проц. упр., 493:1 (2020), 32–37
  23. В. П. Платонов, М. М. Петрунин, “О конечности числа периодических разложений в непрерывную дробь $sqrt{f}$ для кубических многочленов над полями алгебраических чисел”, Докл. РАН. Мат. информ. проц. упр., 495 (2020), 48–54
  24. В. П. Платонов, В. С. Жгун, Г. В. Федоров, “О периодичности непрерывных дробей в гиперэллиптических полях над квадратичным полем констант”, Докл. РАН, 482:2 (2018), 137–141
  25. В. П. Платонов, М. М. Петрунин, В. С. Жгун, Ю. Н. Штейников, “О конечности гиперэллиптических полей со специальными свойствами и периодическим разложением $sqrt{f}$”, Докл. РАН, 483:6 (2018), 609–613
  26. Г. В. Федоров, “Об $S$-единицах для нормирований второй степени в гиперэллиптических полях”, Изв. РАН. Сер. матем., 84:2 (2020), 197–242
  27. Г. В. Федоров, “Периодические непрерывные дроби и $S$-единицы с нормированиями второй степени в гиперэллиптических полях”, Чебышевский сб., 19:3 (2018), 282–297
  28. B. Mazur, “Rational points on modular curves”, Modular functions of one variable V (Univ. Bonn, Bonn, 1976), Lecture Notes in Math., 601, Springer, Berlin, 1977, 107–148
  29. Z. L. Scherr, Rational polynomial Pell equations, Ph.D. thesis, Univ. of Michigan, 2013, v+81 pp.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Платонов В.П., Федоров Г.В., 2021

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».