Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 86, № 4 (2022)

Обложка

Статьи

Каноническое представление $C^*$-алгебры эйконалов метрического графа

Белишев М.И., Каплун А.В.

Аннотация

Алгебра эйконалов $\mathfrak E$ метрического графа $\Omega$ – это операторная $C^*$-алгебра, определяемая динамической системой, которая описывает распространение волн, порожденных источниками в граничных вершинах $\Omega$. В работе описывается каноническая блочная форма алгебры $\mathfrak E$ произвольного компактного связного метрического графа. Переход к этой форме равносилен построению функциональной модели, реализующей $\mathfrak E$ в виде алгебры непрерывных матричнозначных функций на ее спектре $\widehat{\mathfrak{E}}$. Результаты предполагается использовать в обратной задаче, состоящей в реконструкции графа по спектральным и динамическим граничным данным.Библиография: 28 наименований.
Известия Российской академии наук. Серия математическая. 2022;86(4):3-50
pages 3-50 views

Полуправильные многогранники Госсета

Берестовский В.Н., Никоноров Ю.Г.

Аннотация

Работа посвящена исследованию метрических свойств полуправильных многогранников в евклидовых пространствах $\mathbb{R}^n$ при $n\geq 4$ (многогранников Госсета). Полученные результаты позволяют завершить классификацию правильных и полуправильных многогранников в евклидовых пространствах, множества вершин которых образуют нормальные однородные или однородные по Клиффорду–Вольфу метрические пространства.Библиография: 27 наименований.
Известия Российской академии наук. Серия математическая. 2022;86(4):51-84
pages 51-84 views

Слоения на замкнутых трехмерных римановых многообразиях с малым модулем средней кривизны слоев

Болотов Д.В.

Аннотация

Доказано, что модуль средней кривизны слоев трансверсально ориентированного слоения коразмерности один с обобщенной компонентой Риба, заданного на ориентированном замкнутом трехмерном римановом многообразии, не может быть всюду меньше некоторой положительной константы, зависящей от объема, максимального значения секционной кривизны и радиуса инъективности многообразия. Это означает, что слоения с малым модулем средней кривизны слоев являются тугими.Библиография: 9 наименований.
Известия Российской академии наук. Серия математическая. 2022;86(4):85-102
pages 85-102 views

Размерности Гельфанда–Кириллова простых модулей над скрученными групповыми алгебрами $k \ast A$

Gupta A., Arunachalam U.

Аннотация

Для $n$-мерной многопараметрической квантовой алгебры тора $\Lambda_{\mathfrak q}$ над полем $k$, заданной мультипликативно антисимметричной матрицей $\mathfrak q=(q_{ij})$, мы показываем, что в случае, когда ранг без кручения подгруппы $k^\times$, порожденной $q_{ij}$, достаточно велик, есть характеристическое множество значений (возможно, с пробелами) от $0$ до $n$, которые могут быть размерностями Гельфанда–Кириллова (ГК) простых модулей. Частный случай, когда $\mathrm{K}.\dim(\Lambda_{\mathfrak q})=n-1$ и $\Lambda_{\mathfrak q}$ простая, изученный в статье A. Gupta, “$GK$-dimensions of simple modules over $K[X^{\pm 1}, \sigma]$”, Comm. Algebra, 41:7 (2013), 2593–2597, рассматривается без предположения простоты, и показано, что дихотомия продолжает выполняться для ГК-размерностей простых модулей.Библиография: 35 наименований.
Известия Российской академии наук. Серия математическая. 2022;86(4):103-115
pages 103-115 views

О классическом решении макроскопической модели подземного выщелачивания редких металлов

Мейрманов А.М.

Аннотация

Рассматриваются начально-краевые задачи, описывающие процесс подземного выщелачивания редких металлов (уран, никель и т. п.) раствором кислоты. В предположении, что скелет грунта является абсолютно твердым телом, данный физический процесс в поровом пространстве описывается на микроскопическом уровне (характерный размер 5–20 микрон) уравнениями Стокса для несжимаемой жидкости и уравнениями диффузии–конвекции для концентраций кислоты и продуктов химических реакций в поровом пространстве. Поскольку в процессе растворения твердый скелет меняет свою геометрию, граница “поровое пространство–твердый скелет” является неизвестной (свободной). Для сформулированной математической модели физического процесса на микроскопическом уровне с помощью метода усреднения в структурах со специальной периодичностью строго выводится макроскопическая математическая модель (характерный размер метры или десятки метров) для несжимаемой жидкости и доказываются теоремы существования и единственности классического решения начально-краевой задачи в целом по времени соответствующей макроскопической математической модели.Библиография: 38 наименований.
Известия Российской академии наук. Серия математическая. 2022;86(4):116-161
pages 116-161 views

Равномерные жесткие фреймы Мальцева

Новиков С.Я., Севостьянова В.В.

Аннотация

Фрейм пространства $\mathbb{R}^d$ – это набор из $n\geq d$ векторов, линейная оболочка которых совпадает с $\mathbb{R}^d$. Фрейм называется равномерным, если все векторы фрейма имеют одинаковые нормы. Жесткий фрейм допускает представление произвольного вектора из $\mathbb{R}^d$ в форме, максимально похожей на представление в ортонормированном базисе. Каждый равномерный жесткий фрейм является ценным инструментом в создании эффективных вычислительных алгоритмов. Основой построения таких фреймов для $\mathbb{C}^d$ была матрица дискретного преобразования Фурье, в $\mathbb{R}^d$ первые построения равномерных жестких фреймов появились только в начале XXI в. В настоящей работе показано, что заметка А. И. Мальцева 1947 г. опередила время на десятилетия, оказалась пропущенной специалистами по теории фреймов, и именно А. И. Мальцева следует считать автором первой в мире конструкции равномерного жесткого фрейма в $\mathbb{R}^d$. Основная цель данной работы – показать историческую значимость открытия А. И. Мальцева. Упомянутая работа А. И. Мальцева рассмотрена с позиций современной теории фреймов конечномерных пространств. Для исследования важных с точки зрения теории фреймов свойств, таких как равенство модулей попарных скалярных произведений (равноугольность) и наличие полного спарка, т. е. линейная независимость каждого набора из $d$ векторов фрейма, привлекаются проекторы Наймарка и другие операторные методы.Библиография: 10 наименований.
Известия Российской академии наук. Серия математическая. 2022;86(4):162-174
pages 162-174 views

О расширенной форме гипотезы Гротендика–Серра

Панин И.А.

Аннотация

Пусть $R$ – регулярная полулокальная область целостности, содержащая поле, и $K$ – ее поле частных. Пусть $\mu\colon \mathbf{G} \to \mathbf{T}$ – это морфизм групповых $R$-схем между редуктивными групповыми $R$-схемами, который является гладким как морфизм схем. Предположим, что $\mathbf{T}$ – это $R$-тор. Тогда отображение $\mathbf{T}(R)/ \mu(\mathbf{G}(R)) \to \mathbf{T}(K)/ \mu(\mathbf{G}(K))$ является инъективным и выполнена некоторая теорема чистоты. Эти и другие результаты выводятся из расширенной формы гипотезы Гротендика–Серра, доказанной в настоящей статье для вышеуказанных колец $R$.Библиография: 22 наименования.
Известия Российской академии наук. Серия математическая. 2022;86(4):175-191
pages 175-191 views

О стандартной гипотезе для компактификаций моделей Нерона 4-мерных абелевых многообразий

Танкеев С.Г.

Аннотация

Доказано, что после подъема на некоторое конечное разветвленное накрытие гладкой проективной кривой $C$ стандартная гипотеза Гротендика типа Лефшеца верна для компактификации Кюннемана минимальной модели Нерона 4-мерного абелева многообразия с главной поляризацией над полем рациональных функций кривой $C$, если кольцо эндоморфизмов общего геометрического слоя модели Нерона совпадает с кольцом целых чисел. Все плохие редукции полустабильные и имеют торический ранг 1. Для любых точек $\delta,\delta'\in C$ плохих редукций гипотеза Ходжа об алгебраических циклах верна для произведения $A_\delta\times A_{\delta'}$ абелевых многообразий $A_\delta,A_{\delta'}$ – факторов связных компонент нейтральных элементов специальных слоев минимальной модели Нерона по модулю торических частей.Библиография: 53 наименования.
Известия Российской академии наук. Серия математическая. 2022;86(4):192-232
pages 192-232 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».