Canonical form of the $C^*$-algebra of eikonals related to a metric graph

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The eikonal algebra $\mathfrak E$ of a metric graph $\Omega$ is an operator $C^*$-algebra defined by the dynamical system which describes the propagationof waves generated by sources supported at the boundary vertices of $\Omega$. This paper describes the canonical block form of the algebra $\mathfrak E$ for an arbitrary compact connected metric graph. Passing tothis form is equivalent to constructing a functional model which realizes$\mathfrak E$ as an algebra of continuous matrix-valued functions on itsspectrum $\widehat{\mathfrak{E}}$. The results are intended to be used inthe inverse problem of recovering the graph from spectral and dynamical boundary data.

About the authors

Mikhail Igorevich Belishev

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

Email: belishev@pdmi.ras.ru
Doctor of physico-mathematical sciences, no status

Aleksandr Vladimirovich Kaplun

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

Email: alex.v.kaplun@gmail.com

References

  1. М. И. Белишев, “Граничное управление и томография римановых многообразий (BC-метод)”, УМН, 72:4(436) (2017), 3–66
  2. M. Belishev, “Geometrization of rings as a method for solving inverse problems”, Sobolev spaces in mathematics, Int. Math. Ser. (N. Y.), III, Applications in mathematical physics, Springer, New York, 2009, 5–24
  3. M. I. Belishev, M. N. Demchenko, “Elements of noncommutative geometry in inverse problems on manifolds”, J. Geom. Phys., 78 (2014), 29–47
  4. M. I. Belishev, “Boundary spectral inverse problem on a class of graphs (trees) by the BC-method”, Inverse Problems, 20:3 (2004), 647–672
  5. M. I. Belishev, A. F. Vakulenko, “Inverse problems on graphs: recovering the tree of strings by the BC-method”, J. Inverse Ill-Posed Probl., 14:1 (2006), 29–46
  6. M. I. Belishev, N. Wada, “On revealing graph cycles via boundary measurements”, Inverse Problems, 25:10 (2009), 105011, 21 pp.
  7. M. I. Belishev, N. Wada, “A $C^*$-algebra associated with dynamics on a graph of strings”, J. Math. Soc. Japan, 67:3 (2015), 1239–1274
  8. M. I. Belishev, A. V. Kaplun, “Eikonal algebra on a graph of simple structure”, Eurasian J. Math. Comput. Appl., 6:3 (2018), 4–33
  9. Н. Б. Васильев, “$C^*$-алгебры с конечномерными неприводимыми представлениями”, УМН, 21:1(127) (1966), 135–154
  10. P. Niemiec, “Models for subhomogeneous $C^*$-algebras”, Colloq. Math., 166:1 (2021), 75–106
  11. S. Avdonin, P. Kurasov, “Inverse problems for quantum trees”, Inverse Probl. Imaging, 2:1 (2008), 1–21
  12. S. Avdonin, P. Kurasov, M. Nowaczyk, “Inverse problems for quantum trees II: recovering matching conditions for star graphs”, Inverse Probl. Imaging, 4:4 (2010), 579–598
  13. S. Avdonin, G. Leugering, V. Mikhaylov, “On an inverse problem for tree-like networks of elastic strings”, ZAMM Z. Angew. Math. Mech., 90:2 (2010), 136–150
  14. P. Kurasov, M. Nowaczyk, “Inverse spectral problem for quantum graphs”, J. Phys. A, 38:22 (2005), 4901–4915
  15. P. Kurasov, M. Nowaczyk, “Geometric properties of quantum graphs and vertex scattering matrices”, Opuscula Math., 30:3 (2010), 295–309
  16. P. Kurasov, “Graph Laplacians and topology”, Ark. Mat., 46:1 (2008), 95–111
  17. M. Nowaczyk, “Inverse spectral problem for quantum graphs with rationally dependent edges”, Operator theory, analysis and mathematical physics, Oper. Theory Adv. Appl., 174, Birkhäuser, Basel, 2007, 105–116
  18. В. А. Юрко, “О восстановлении операторов Штурма–Лиувилля на графах”, Матем. заметки, 79:4 (2006), 619–630
  19. V. A. Yurko, “Inverse spectral problems for differential operators on arbitrary compact graphs”, J. Inverse Ill-Posed Probl., 18:3 (2010), 245–261
  20. V. A. Yurko, “An inverse problem for higher order differential operators on star-type graphs”, Inverse Problems, 23:3 (2007), 893–903
  21. G. Berkolaiko, P. Kuchment, Introduction to quantum graphs, Math. Surveys Monogr., 186, Amer. Math. Soc., Providence, RI, 2013, xiv+270 pp.
  22. А. В. Каплун, “Каноническое представление алгебры эйконалов трехлучевого графа”, Математические вопросы теории распространения волн. 51, Зап. науч. сем. ПОМИ, 506, ПОМИ, СПб., 2021, 57–78
  23. М. Ш. Бирман, М. З. Соломяк, Спектральная теория самосопряженных операторов в гильбертовом пространстве, 2-е изд., испр. и доп., Лань, СПб.–М.–Краснодар, 2010, 464 с.
  24. Ж. Диксмье, $C^*$-алгебры и их представления, Наука, М., 1974, 399 с.
  25. Дж. Мерфи, $C^*-$алгебры и теория операторов, Факториал, М., 1997, 336 с.
  26. Д. В. Кориков, “Об унитарных инвариантах семейства одномерных подпространств”, Препринты ПОМИ, 2022, 2/2022, 6 с.
  27. W. Arveson, An invitation to $C^*$-algebras, Grad. Texts in Math., 39, Springer-Verlag, New York–Heidelberg, 1976, x+106 pp.
  28. М. А. Наймарк, Нормированные кольца, 2-е изд., Наука, М., 1968, 664 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Belishev M.I., Kaplun A.V.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).