Canonical form of the $C^*$-algebra of eikonals related to a metric graph
- Authors: Belishev M.I.1, Kaplun A.V.1
-
Affiliations:
- St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
- Issue: Vol 86, No 4 (2022)
- Pages: 3-50
- Section: Articles
- URL: https://ogarev-online.ru/1607-0046/article/view/133872
- DOI: https://doi.org/10.4213/im9179
- ID: 133872
Cite item
Abstract
The eikonal algebra $\mathfrak E$ of a metric graph $\Omega$ is an operator $C^*$-algebra defined by the dynamical system which describes the propagationof waves generated by sources supported at the boundary vertices of $\Omega$. This paper describes the canonical block form of the algebra $\mathfrak E$ for an arbitrary compact connected metric graph. Passing tothis form is equivalent to constructing a functional model which realizes$\mathfrak E$ as an algebra of continuous matrix-valued functions on itsspectrum $\widehat{\mathfrak{E}}$. The results are intended to be used inthe inverse problem of recovering the graph from spectral and dynamical boundary data.
About the authors
Mikhail Igorevich Belishev
St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Email: belishev@pdmi.ras.ru
Doctor of physico-mathematical sciences, no status
Aleksandr Vladimirovich Kaplun
St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Email: alex.v.kaplun@gmail.com
References
- М. И. Белишев, “Граничное управление и томография римановых многообразий (BC-метод)”, УМН, 72:4(436) (2017), 3–66
- M. Belishev, “Geometrization of rings as a method for solving inverse problems”, Sobolev spaces in mathematics, Int. Math. Ser. (N. Y.), III, Applications in mathematical physics, Springer, New York, 2009, 5–24
- M. I. Belishev, M. N. Demchenko, “Elements of noncommutative geometry in inverse problems on manifolds”, J. Geom. Phys., 78 (2014), 29–47
- M. I. Belishev, “Boundary spectral inverse problem on a class of graphs (trees) by the BC-method”, Inverse Problems, 20:3 (2004), 647–672
- M. I. Belishev, A. F. Vakulenko, “Inverse problems on graphs: recovering the tree of strings by the BC-method”, J. Inverse Ill-Posed Probl., 14:1 (2006), 29–46
- M. I. Belishev, N. Wada, “On revealing graph cycles via boundary measurements”, Inverse Problems, 25:10 (2009), 105011, 21 pp.
- M. I. Belishev, N. Wada, “A $C^*$-algebra associated with dynamics on a graph of strings”, J. Math. Soc. Japan, 67:3 (2015), 1239–1274
- M. I. Belishev, A. V. Kaplun, “Eikonal algebra on a graph of simple structure”, Eurasian J. Math. Comput. Appl., 6:3 (2018), 4–33
- Н. Б. Васильев, “$C^*$-алгебры с конечномерными неприводимыми представлениями”, УМН, 21:1(127) (1966), 135–154
- P. Niemiec, “Models for subhomogeneous $C^*$-algebras”, Colloq. Math., 166:1 (2021), 75–106
- S. Avdonin, P. Kurasov, “Inverse problems for quantum trees”, Inverse Probl. Imaging, 2:1 (2008), 1–21
- S. Avdonin, P. Kurasov, M. Nowaczyk, “Inverse problems for quantum trees II: recovering matching conditions for star graphs”, Inverse Probl. Imaging, 4:4 (2010), 579–598
- S. Avdonin, G. Leugering, V. Mikhaylov, “On an inverse problem for tree-like networks of elastic strings”, ZAMM Z. Angew. Math. Mech., 90:2 (2010), 136–150
- P. Kurasov, M. Nowaczyk, “Inverse spectral problem for quantum graphs”, J. Phys. A, 38:22 (2005), 4901–4915
- P. Kurasov, M. Nowaczyk, “Geometric properties of quantum graphs and vertex scattering matrices”, Opuscula Math., 30:3 (2010), 295–309
- P. Kurasov, “Graph Laplacians and topology”, Ark. Mat., 46:1 (2008), 95–111
- M. Nowaczyk, “Inverse spectral problem for quantum graphs with rationally dependent edges”, Operator theory, analysis and mathematical physics, Oper. Theory Adv. Appl., 174, Birkhäuser, Basel, 2007, 105–116
- В. А. Юрко, “О восстановлении операторов Штурма–Лиувилля на графах”, Матем. заметки, 79:4 (2006), 619–630
- V. A. Yurko, “Inverse spectral problems for differential operators on arbitrary compact graphs”, J. Inverse Ill-Posed Probl., 18:3 (2010), 245–261
- V. A. Yurko, “An inverse problem for higher order differential operators on star-type graphs”, Inverse Problems, 23:3 (2007), 893–903
- G. Berkolaiko, P. Kuchment, Introduction to quantum graphs, Math. Surveys Monogr., 186, Amer. Math. Soc., Providence, RI, 2013, xiv+270 pp.
- А. В. Каплун, “Каноническое представление алгебры эйконалов трехлучевого графа”, Математические вопросы теории распространения волн. 51, Зап. науч. сем. ПОМИ, 506, ПОМИ, СПб., 2021, 57–78
- М. Ш. Бирман, М. З. Соломяк, Спектральная теория самосопряженных операторов в гильбертовом пространстве, 2-е изд., испр. и доп., Лань, СПб.–М.–Краснодар, 2010, 464 с.
- Ж. Диксмье, $C^*$-алгебры и их представления, Наука, М., 1974, 399 с.
- Дж. Мерфи, $C^*-$алгебры и теория операторов, Факториал, М., 1997, 336 с.
- Д. В. Кориков, “Об унитарных инвариантах семейства одномерных подпространств”, Препринты ПОМИ, 2022, 2/2022, 6 с.
- W. Arveson, An invitation to $C^*$-algebras, Grad. Texts in Math., 39, Springer-Verlag, New York–Heidelberg, 1976, x+106 pp.
- М. А. Наймарк, Нормированные кольца, 2-е изд., Наука, М., 1968, 664 с.
Supplementary files
