Nice triples and moving lemmas for motivic spaces
- Autores: Panin I.A.1,2
-
Afiliações:
- St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
- University of Oslo
- Edição: Volume 83, Nº 4 (2019)
- Páginas: 158-193
- Seção: Articles
- URL: https://ogarev-online.ru/1607-0046/article/view/133797
- DOI: https://doi.org/10.4213/im8819
- ID: 133797
Citar
Resumo
Palavras-chave
Sobre autores
Ivan Panin
St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences; University of Oslo
Email: paniniv@gmail.com
Doctor of physico-mathematical sciences
Bibliografia
- I. Panin, Proof of Grothendieck–Serre conjecture on principal $G$-bundles over semi-local regular domains containing a finite field, 2017
- F. Morel, $mathbb A1$-algebraic topology over a field, Lecture Notes in Math., 2052, Springer, Heidelberg, 2012, x+259 pp.
- I. Panin, A. Stavrova, N. Vavilov, “On Grothendieck–Serre's conjecture concerning principal $G$-bundles over reductive group schemes: I”, Compos. Math., 151:3 (2015), 535–567
- V. Voevodsky, “Cohomological theory of presheaves with transfers”, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 87–137
- I. Panin, “Oriented cohomology theories of algebraic varieties. II (After I. Panin and A. Smirnov)”, Homology Homotopy Appl., 11:1 (2009), 349–405
- F. Morel, V. Voevodsky, “$mathbf A^1$-homotopy theory of schemes”, Inst. Hautes Etudes Sci. Publ. Math., 90 (1999), 45–143
- M. Ojanguren, I. Panin, “Rationally trivial hermitian spaces are locally trivial”, Math. Z., 237:1 (2001), 181–198
- M. Artin, “Comparaison avec la cohomologie classique: cas d'un preschema lisse”, Theorie des topos et cohomologie etale des schemas, Seminaire de geometrie algebrique du Bois-Marie 1963–1964 (SGA 4), v. 3, Lecture Notes in Math., 305, Exp. XI, Springer-Verlag, Berlin–New York, 1973, 64–78
- D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, New York, 1995, xvi+785 pp.
- M. Ojanguren, I. Panin, “A purity theorem for the Witt group”, Ann. Sci. Ecole Norm. Sup. (4), 32:1 (1999), 71–86
- J.-L. Colliot-Thelène, M. Ojanguren, “Espaces principaux homogènes localement triviaux”, Inst. Hautes Etudes Sci. Publ. Math., 75 (1992), 97–122
- B. Poonen, “Bertini theorems over finite fields”, Ann. of Math. (2), 160:3 (2004), 1099–1127
- F. Charles, B. Poonen, “Bertini irreducibility theorems over finite fields”, J. Amer. Math. Soc., 29:1 (2016), 81–94
Arquivos suplementares
