Совершенные тройки и гомотопии отображений мотивных пространств

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В настоящей статье развиты геометрические методы для решения одной гипотезы Гротендика–Серра, доказанной для случая конечных полей в [1]. Оказывается, что эти методы позволяют решить некоторые когомологические задачи. В частности, для любого предпучка $S^1$-спектров $E$ на категории $k$-гладких схем все его пучки Нисневича $\mathbf{A}^1$-стабильных гомотопических групп являются строго гомотопически инвариантными. Это показывает, что $E$ является $\mathbf{A}^1$-локальным, если и только если все его пучки Нисневича обычных стабильных гомотопических групп являются строго гомотопически инвариантными. Если поле $k$ бесконечно, то этот результат получен Морелем в [2]. Однако, если поле $k$ конечно, то доказательсво Мореля не работает, так как оно опирается на одну геометрическую лемму Габбера, опубликованное доказательство которой отсутствует. Мы не пользуемся отмеченной леммой Габбера. Вместо этого мы развиваем технику совершенных троек, определенных в [3]. Указанная техника инспирирована техникой стандартных троек Воеводского [4].Библиография: 13 наименований.

Об авторах

Иван Александрович Панин

Санкт-Петербургское отделение Математического института им. В. А. Стеклова Российской академии наук; University of Oslo

Email: paniniv@gmail.com
доктор физико-математических наук

Список литературы

  1. I. Panin, Proof of Grothendieck–Serre conjecture on principal $G$-bundles over semi-local regular domains containing a finite field, 2017
  2. F. Morel, $mathbb A1$-algebraic topology over a field, Lecture Notes in Math., 2052, Springer, Heidelberg, 2012, x+259 pp.
  3. I. Panin, A. Stavrova, N. Vavilov, “On Grothendieck–Serre's conjecture concerning principal $G$-bundles over reductive group schemes: I”, Compos. Math., 151:3 (2015), 535–567
  4. V. Voevodsky, “Cohomological theory of presheaves with transfers”, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 87–137
  5. I. Panin, “Oriented cohomology theories of algebraic varieties. II (After I. Panin and A. Smirnov)”, Homology Homotopy Appl., 11:1 (2009), 349–405
  6. F. Morel, V. Voevodsky, “$mathbf A^1$-homotopy theory of schemes”, Inst. Hautes Etudes Sci. Publ. Math., 90 (1999), 45–143
  7. M. Ojanguren, I. Panin, “Rationally trivial hermitian spaces are locally trivial”, Math. Z., 237:1 (2001), 181–198
  8. M. Artin, “Comparaison avec la cohomologie classique: cas d'un preschema lisse”, Theorie des topos et cohomologie etale des schemas, Seminaire de geometrie algebrique du Bois-Marie 1963–1964 (SGA 4), v. 3, Lecture Notes in Math., 305, Exp. XI, Springer-Verlag, Berlin–New York, 1973, 64–78
  9. D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, New York, 1995, xvi+785 pp.
  10. M. Ojanguren, I. Panin, “A purity theorem for the Witt group”, Ann. Sci. Ecole Norm. Sup. (4), 32:1 (1999), 71–86
  11. J.-L. Colliot-Thelène, M. Ojanguren, “Espaces principaux homogènes localement triviaux”, Inst. Hautes Etudes Sci. Publ. Math., 75 (1992), 97–122
  12. B. Poonen, “Bertini theorems over finite fields”, Ann. of Math. (2), 160:3 (2004), 1099–1127
  13. F. Charles, B. Poonen, “Bertini irreducibility theorems over finite fields”, J. Amer. Math. Soc., 29:1 (2016), 81–94

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Панин И.А., 2019

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».