Multivariate tile $\mathrm{B}$-splines
- Авторлар: Zaitseva T.I.1,2
-
Мекемелер:
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
- Moscow Center for Fundamental and Applied Mathematics
- Шығарылым: Том 87, № 2 (2023)
- Беттер: 89-132
- Бөлім: Articles
- URL: https://ogarev-online.ru/1607-0046/article/view/133903
- DOI: https://doi.org/10.4213/im9296
- ID: 133903
Дәйексөз келтіру
Аннотация
Негізгі сөздер
Авторлар туралы
Tatyana Zaitseva
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematicswithout scientific degree, no status
Әдебиет тізімі
- К. де Бор, Практическое руководство по сплайнам, Радио и связь, М., 1985, 304 с.
- И. Добеши, Десять лекций по вейвлетам, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2001, 464 с.
- И. Я. Новиков, В. Ю. Протасов, М. А. Скопина, Теория всплесков, Физматлит, М., 2005, 613 с.
- P. Wojtaszczyk, A mathematical introduction to wavelets, London Math. Soc. Stud. Texts, 37, Cambridge Univ. Press, Cambridge, 1997, xii+261 pp.
- A. Yu. Shadrin, “The $L_{infty}$-norm of the $L_2$-spline projector is bounded independently of the knot sequence: a proof of de Boor's conjecture”, Acta Math., 187:1 (2001), 59–137
- C. de Boor, R. A. DeVore, A. Ron, “On the construction of multivariate (pre)wavelets”, Constr. Approx., 9:2-3 (1993), 123–166
- В. Ю. Протасов, “Фрактальные кривые и всплески”, Изв. РАН. Сер. матем., 70:5 (2006), 123–162
- П. А. Терехин, “О наилучшем приближении функций в метрике $L_p$ полиномами по аффинной системе”, Матем. сб., 202:2 (2011), 131–158
- C. De Boor, K. Höllig, S. Riemenschneider, Box splines, Appl. Math. Sci., 98, Springer-Verlag, New York, 1993, xviii+200 pp.
- M. Charina, C. Conti, K. Jetter, G. Zimmermann, “Scalar multivariate subdivision schemes and box splines”, Comput. Aided Geom. Design, 28:5 (2011), 285–306
- D. Van de Ville, T. Blu, M. Unser, “Isotropic polyharmonic B-splines: scaling functions and wavelets”, IEEE Trans. Image Process., 14:11 (2005), 1798–1813
- V. G. Zakharov, “Elliptic scaling functions as compactly supported multivariate analogs of the B-splines”, Int. J. Wavelets Multiresolut. Inf. Process., 12:02 (2014), 1450018, 23 pp.
- S. Zube, “Number systems, $alpha$-splines and refinement”, J. Comput. Appl. Math., 172:2 (2004), 207–231
- J. Lagarias, Yang Wang, “Integral self-affine tiles in $mathbb{R}^n$. II. Lattice tilings”, J. Fourier Anal. Appl., 3:1 (1997), 83–102
- K. Gröchenig, A. Haas, “Self-similar lattice tilings”, J. Fourier Anal. Appl., 1:2 (1994), 131–170
- K. Gröchenig, W. R. Madych, “Multiresolution analysis, Haar bases, and self-similar tilings of $mathbb{R}^n$”, IEEE Trans. Inform. Theory, 38:2, Part 2 (1992), 556–568
- A. S. Cavaretta, W. Dahmen, C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc., 93, no. 453, Amer. Math. Soc., Providence, RI, 1991, vi+186 pp.
- E. Catmull, J. Clark, “Recursively generated B-spline surfaces on arbitrary topological meshes”, Comput.-Aided Des., 10:6 (1978), 350–355
- T. Zaitseva, TZZZZ/Tile_Bsplines
- C. A. Cabrelli, C. Heil, U. M. Molter, Self-similarity and multiwavelets in higher dimensions, Mem. Amer. Math. Soc., 170, no. 807, Amer. Math. Soc., Providence, RI, 2004, viii+82 pp.
- A. Krivoshein, V. Protasov, M. Skopina, Multivariate wavelet frames, Ind. Appl. Math., Springer, Singapore, 2016, xiii+248 pp.
- G. Strang, G. Fix, “A Fourier analysis of the finite element variational method”, Constructive aspects of functional analysis (Erice, 1971), C.I.M.E. Summer Schools, 57, Cremonese, 1973, 793–840
- C. de Boor, R. A. DeVore, A. Ron, “The structure of finitely generated shift-invariant spaces in $L_2(mathbb{R}^d)$”, J. Funct. Anal., 119:1 (1994), 37–78
- C. de Boor, R. Devore, A. Ron, “Approximation from shift-invariant subspaces of $L_2(mathbb{R}^d)$”, Trans. Amer. Math. Soc., 341:2 (1994), 787–806
- I. Kirat, Ka-Sing Lau, “On the connectedness of self-affine tiles”, J. London Math. Soc. (2), 62:1 (2000), 291–304
- C. Bandt, G. Gelbrich, “Classification of self-affine lattice tilings”, J. London Math. Soc. (2), 50:3 (1994), 581–593
- G. Gelbrich, “Self-affine lattice reptiles with two pieces in $mathbb{R}^n$”, Math. Nachr., 178 (1996), 129–134
- W. J. Gilbert, “Radix representations of quadratic fields”, J. Math. Anal. Appl., 83:1 (1981), 264–274
- R. F. Gundy, A. L. Jonsson, “Scaling functions on $mathbb{R}^2$ for dilations of determinant $pm 2$”, Appl. Comput. Harmon. Anal., 29:1 (2010), 49–62
- C. Bandt, Combinatorial topology of three-dimensional self-affine tiles
- C. Bandt, “Self-similar sets. 5. Integer matrices and fractal tilings of $mathbb{R}^n$”, Proc. Amer. Math. Soc., 112:2 (1991), 549–562
- Xiaoye Fu, J.-P. Gabardo, Self-affine scaling sets in $mathbb R^2$, Mem. Amer. Math. Soc., 233, no. 1097, Amer. Math. Soc., Providence, RI, 2015, vi+85 pp.
- J. C. Lagarias, Yang Wang, “Haar type orthonormal wavelet bases in $mathbf{R}^2$”, J. Fourier Anal. Appl., 2:1 (1995), 1–14
- T. Zaitseva, “Haar wavelets and subdivision algorithms on the plane”, Adv. Syst. Sci. Appl., 17:3 (2017), 49–57
- V. G. Zakharov, “Rotation properties of 2D isotropic dilation matrices”, Int. J. Wavelets Multiresolut. Inf. Process., 16:1 (2018), 1850001, 14 pp.
- Т. И. Зайцева, В. Ю. Протасов, “Самоподобные 2-аттракторы и тайлы”, Матем. сб., 213:6 (2022), 71–110
- Б. В. Шабат, Введение в комплексный анализ, т. 1, 2, 4-е стереотип. изд., Лань, СПб., 2004, 336 с., 464 с.
- M. Charina, V. Yu. Protasov, “Regularity of anisotropic refinable functions”, Appl. Comput. Harmon. Anal., 47:3 (2019), 795–821
- M. Charina, Th. Mejstrik, “Multiple multivariate subdivision schemes: matrix and operator approaches”, J. Comput. Appl. Math., 349 (2019), 279–291
- М. Г. Крейн, М. А. Рутман, “Линейные операторы, оставляющие инвариантным конус в пространстве Банаха”, УМН, 3:1(23) (1948), 3–95
- В. Ю. Протасов, “Обобщенный совместный спектральный радиус. Геометрический подход”, Изв. РАН. Сер. матем., 61:5 (1997), 99–136
- V. D. Blondel, Yu. Nesterov, “Computationally efficient approximations of the joint spectral radius”, SIAM J. Matrix Anal. Appl., 27:1 (2005), 256–272
- V. D. Blondel, S. Gaubert, J. N. Tsitsiklis, “Approximating the spectral radius of sets of matrices in the max-algebra is NP-hard”, IEEE Trans. Automat. Control, 45:9 (2000), 1762–1765
- N. Guglielmi, V. Protasov, “Exact computation of joint spectral characteristics of linear operators”, Found. Comput. Math., 13:1 (2013), 37–97
- T. Mejstrik, “Algorithm 1011: improved invariant polytope algorithm and applications”, ACM Trans. Math. Software, 46:3 (2020), 29, 26 pp.
- P. Oswald, “Designing composite triangular subdivision schemes”, Comput. Aided Geom. Design, 22:7 (2005), 659–679
- P. Oswald, P. Schröder, “Composite primal/dual $sqrt{3}$-subdivision schemes”, Comput. Aided Geom. Design, 20:3 (2003), 135–164
- Qingtang Jiang, P. Oswald, “Triangular $sqrt 3$-subdivision schemes: the regular case”, J. Comput. Appl. Math., 156:1 (2003), 47–75
- Т. И. Зайцева, “Простые тайлы и аттракторы”, Матем. сб., 211:9 (2020), 24–59
- M. Charina, C. Conti, T. Sauer, “Regularity of multivariate vector subdivision schemes”, Numer. Algorithms, 39:1-3 (2005), 97–113
- N. Dyn, D. Levin, “Subdivision schemes in geometric modelling”, Acta Numer., 11 (2002)
- V. Protasov, “The stability of subdivision operator at its fixed point”, SIAM J. Math. Anal., 33:2 (2001), 448–460
- C. Conti, K. Jetter, “Concerning order of convergence for subdivision”, Numer. Algorithms, 36:4 (2004), 345–363
- A. Cohen, K. Gröchenig, L. F. Villemoes, “Regularity of multivariate refinable functions”, Constr. Approx., 15:2 (1999), 241–255
- D. Mekhontsev, IFStile software
Қосымша файлдар
