Biregular and birational geometry of quartic double solids with 15 nodes
- Авторлар: Avilov A.A.1
-
Мекемелер:
- HSE University
- Шығарылым: Том 83, № 3 (2019)
- Беттер: 5-14
- Бөлім: Articles
- URL: https://ogarev-online.ru/1607-0046/article/view/133771
- DOI: https://doi.org/10.4213/im8837
- ID: 133771
Дәйексөз келтіру
Аннотация
Three-dimensional del Pezzo varieties of degree $2$ are double covers of$\mathbb{P}^{3}$ branched in a quartic. We prove that if a del Pezzo varietyof degree $2$ has exactly $15$ nodes, then the corresponding quartic is a hyperplanesection of the Igusa quartic or, equivalently, all such del Pezzovarieties are members of a particular linear system on the Coble fourfold.Their automorphism groups are induced from the automorphism group of theCoble fourfold. We also classify all birationally rigid varieties of thistype.
Негізгі сөздер
Әдебиет тізімі
- I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. I, Progr. Math., 269, Birkhäuser Boston, Inc., Boston, MA, 2009, 443–548
- Yu. Prokhorov, “$G$-Fano threefolds. I”, Adv. Geom., 13:3 (2013), 389–418
- А. А. Авилов, “Автоморфизмы трехмерных многообразий, представимых в виде пересечения двух квадрик”, Матем. сб., 207:3 (2016), 3–18
- A. Avilov, “Automorphisms of singular three-dimensional cubic hypersurfaces”, Eur. J. Math., 4:3 (2018), 761–777
- I. Cheltsov, V. Przyjalkowski, C. Shramov, Which quartic double solids are rational?, accepted to J. Alg. Geom., 2015
- I. Cheltsov, A. Kuznetsov, C. Shramov, Coble fourfold, $S_6$-invariant quartic threefolds, and Wiman–Edge sextics, 2017
- C. Rito, X. Roulleau, A. Sarti, Explicit Schoen surfaces, 2016
- I. V. Dolgachev, “Abstract configurations in algebraic geometry”, The Fano conference, Univ. Torino, Turin, 2004, 423–462
- I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012, xii+639 pp.
- I. Cheltsov, V. Przyjalkowski, C. Shramov, “Quartic double solids with icosahedral symmetry”, Eur. J. Math., 2:1 (2016), 96–119
- I. Cheltsov, C. Shramov, Cremona groups and the icosahedron, Monogr. Res. Notes Math., CRC Press, Boca Raton, FL, 2016, xxi+504 pp.
Қосымша файлдар
