Biregular and birational geometry of quartic double solids with 15 nodes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Three-dimensional del Pezzo varieties of degree $2$ are double covers of$\mathbb{P}^{3}$ branched in a quartic. We prove that if a del Pezzo varietyof degree $2$ has exactly $15$ nodes, then the corresponding quartic is a hyperplanesection of the Igusa quartic or, equivalently, all such del Pezzovarieties are members of a particular linear system on the Coble fourfold.Their automorphism groups are induced from the automorphism group of theCoble fourfold. We also classify all birationally rigid varieties of thistype.

About the authors

Artem Alexeevich Avilov

HSE University

References

  1. I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. I, Progr. Math., 269, Birkhäuser Boston, Inc., Boston, MA, 2009, 443–548
  2. Yu. Prokhorov, “$G$-Fano threefolds. I”, Adv. Geom., 13:3 (2013), 389–418
  3. А. А. Авилов, “Автоморфизмы трехмерных многообразий, представимых в виде пересечения двух квадрик”, Матем. сб., 207:3 (2016), 3–18
  4. A. Avilov, “Automorphisms of singular three-dimensional cubic hypersurfaces”, Eur. J. Math., 4:3 (2018), 761–777
  5. I. Cheltsov, V. Przyjalkowski, C. Shramov, Which quartic double solids are rational?, accepted to J. Alg. Geom., 2015
  6. I. Cheltsov, A. Kuznetsov, C. Shramov, Coble fourfold, $S_6$-invariant quartic threefolds, and Wiman–Edge sextics, 2017
  7. C. Rito, X. Roulleau, A. Sarti, Explicit Schoen surfaces, 2016
  8. I. V. Dolgachev, “Abstract configurations in algebraic geometry”, The Fano conference, Univ. Torino, Turin, 2004, 423–462
  9. I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012, xii+639 pp.
  10. I. Cheltsov, V. Przyjalkowski, C. Shramov, “Quartic double solids with icosahedral symmetry”, Eur. J. Math., 2:1 (2016), 96–119
  11. I. Cheltsov, C. Shramov, Cremona groups and the icosahedron, Monogr. Res. Notes Math., CRC Press, Boca Raton, FL, 2016, xxi+504 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Avilov A.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).