Stability of approximation in classical problems of geometric approximation theory

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Approximative compactness type properties in various problems of $\min$- and $\max$-approximation are studied.
This leads naturally to “special points” of approximation theory — these being the spaces characterizable in approximative compactness terms for various classical problems of approximation. These “special points” are CLUR–spaces, Day–Oshman spaces, Anderson–Megginson spaces, CMLUR-spaces, and AT-spaces.

About the authors

Alexey Rostislavovich Alimov

Lomonosov Moscow State University; Saint Petersburg State University

Email: alexey.alimov-msu@yandex.ru, alexey.alimov@gmail.com
ORCID iD: 0000-0001-8806-1593
Scopus Author ID: 7007117638
ResearcherId: M-3902-2015
Doctor of physico-mathematical sciences, Head Scientist Researcher

Igor' Germanovich Tsar'kov

Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics

Email: tsar@mech.math.msu.su
ORCID iD: 0000-0002-5943-3711
Scopus Author ID: 6602443197
Doctor of physico-mathematical sciences, Professor

References

  1. A. R. Alimov, I. G. Tsar'kov, Geometric approximation theory, Springer Monogr. Math., Springer, Cham, 2021, xxi+508 pp.
  2. S. Cobzaş, “Geometric properties of Banach spaces and the existence of nearest and farthest points”, Abstr. Appl. Anal., 2005:3 (2005), 259–285
  3. A. R. Alimov, I. G. Tsar'kov, “Connectedness and approximative properties of sets in asymmetric spaces”, Filomat, 38:9 (2024), 3243–3259
  4. I. G. Tsar'kov, “Convexity of $delta$-suns and $gamma$-suns in asymmetric spaces”, Russ. J. Math. Phys., 31:2 (2024), 325–334
  5. B. B. Panda, O. P. Kapoor, “A generalization of local uniform convexity of the norm”, J. Math. Anal. Appl., 52:2 (1975), 300–308
  6. A. A. Astaneh, “Completeness of normed linear spaces admitting centers”, J. Austral. Math. Soc. Ser. A, 39:3 (1985), 360–366
  7. F. Deutsch, J. M. Lambert, “On continuity of metric projections”, J. Approx. Theory, 29:2 (1980), 116–131
  8. A. R. Alimov, I. G. Tsar'kov, “Max-solar properties of sets in normed and asymmetrically normed spaces”, J. Convex Anal., 30:1 (2023), 159–174
  9. Xi Nian Fang, Jian Hua Wang, “Convexity and the continuity of metric projections”, Math. Appl. (Wuhan), 14:1 (2001), 47–51
  10. A. J. Guirao, V. Montesinos, “A note in approximative compactness and continuity of metric projections in Banach spaces”, J. Convex Anal., 18:2 (2011), 397–401
  11. J. P. Revalski, N. V. Zhivkov, “Best approximation problems in compactly uniformly rotund spaces”, J. Convex Anal., 19:4 (2012), 1153–1166
  12. R. E. Megginson, The semi-Kadec–Klee condition and nearest-point properties of sets in normed linear spaces, Ph.D. thesis, Univ. of Illinois, Urbana–Champaign, IL, 1984, 135 pp.
  13. P. Bandyopadhyay, Yongjin Li, Bor-Luh Lin, D. Narayana, “Proximinality in Banach spaces”, J. Math. Anal. Appl., 341:1 (2008), 309–317
  14. S. Dutta, P. Shunmugaraj, “Weakly compactly LUR Banach spaces”, J. Math. Anal. Appl., 458:2 (2018), 1203–1213
  15. K. W. Anderson, Midpoint local uniform convexity, and other geometric properties of Banach spaces, Ph.D. thesis, Univ. of Illinois, Urbana–Champaign, IL, 1960, 52 pp.
  16. R. E. Megginson, An introduction to Banach space theory, Grad. Texts in Math., 183, Springer-Verlag, New York, 1998, xx+596 pp.
  17. Z. H. Zhang, C. Y. Liu, “Convexities and existence of the farthest point”, Abstr. Appl. Anal., 2011, 139597, 9 pp.
  18. I. G. Tsar'kov, “Local and global suns”, Russ. J. Math. Phys., 31:4 (2024), 765–773

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Alimov A.R., Tsar'kov I.G.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).