Stability of approximation in classical problems of geometric approximation theory
- Authors: Alimov A.R.1,2, Tsar'kov I.G.1,3
-
Affiliations:
- Lomonosov Moscow State University
- Saint Petersburg State University
- Moscow Center for Fundamental and Applied Mathematics
- Issue: Vol 89, No 6 (2025)
- Pages: 3-27
- Section: Articles
- URL: https://ogarev-online.ru/1607-0046/article/view/358687
- DOI: https://doi.org/10.4213/im9660
- ID: 358687
Cite item
Abstract
This leads naturally to “special points” of approximation theory — these being the spaces characterizable in approximative compactness terms for various classical problems of approximation. These “special points” are CLUR–spaces, Day–Oshman spaces, Anderson–Megginson spaces, CMLUR-spaces, and AT-spaces.
About the authors
Alexey Rostislavovich Alimov
Lomonosov Moscow State University; Saint Petersburg State University
Email: alexey.alimov-msu@yandex.ru, alexey.alimov@gmail.com
ORCID iD: 0000-0001-8806-1593
Scopus Author ID: 7007117638
ResearcherId: M-3902-2015
Doctor of physico-mathematical sciences, Head Scientist Researcher
Igor' Germanovich Tsar'kov
Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics
Email: tsar@mech.math.msu.su
ORCID iD: 0000-0002-5943-3711
Scopus Author ID: 6602443197
Doctor of physico-mathematical sciences, Professor
References
- A. R. Alimov, I. G. Tsar'kov, Geometric approximation theory, Springer Monogr. Math., Springer, Cham, 2021, xxi+508 pp.
- S. Cobzaş, “Geometric properties of Banach spaces and the existence of nearest and farthest points”, Abstr. Appl. Anal., 2005:3 (2005), 259–285
- A. R. Alimov, I. G. Tsar'kov, “Connectedness and approximative properties of sets in asymmetric spaces”, Filomat, 38:9 (2024), 3243–3259
- I. G. Tsar'kov, “Convexity of $delta$-suns and $gamma$-suns in asymmetric spaces”, Russ. J. Math. Phys., 31:2 (2024), 325–334
- B. B. Panda, O. P. Kapoor, “A generalization of local uniform convexity of the norm”, J. Math. Anal. Appl., 52:2 (1975), 300–308
- A. A. Astaneh, “Completeness of normed linear spaces admitting centers”, J. Austral. Math. Soc. Ser. A, 39:3 (1985), 360–366
- F. Deutsch, J. M. Lambert, “On continuity of metric projections”, J. Approx. Theory, 29:2 (1980), 116–131
- A. R. Alimov, I. G. Tsar'kov, “Max-solar properties of sets in normed and asymmetrically normed spaces”, J. Convex Anal., 30:1 (2023), 159–174
- Xi Nian Fang, Jian Hua Wang, “Convexity and the continuity of metric projections”, Math. Appl. (Wuhan), 14:1 (2001), 47–51
- A. J. Guirao, V. Montesinos, “A note in approximative compactness and continuity of metric projections in Banach spaces”, J. Convex Anal., 18:2 (2011), 397–401
- J. P. Revalski, N. V. Zhivkov, “Best approximation problems in compactly uniformly rotund spaces”, J. Convex Anal., 19:4 (2012), 1153–1166
- R. E. Megginson, The semi-Kadec–Klee condition and nearest-point properties of sets in normed linear spaces, Ph.D. thesis, Univ. of Illinois, Urbana–Champaign, IL, 1984, 135 pp.
- P. Bandyopadhyay, Yongjin Li, Bor-Luh Lin, D. Narayana, “Proximinality in Banach spaces”, J. Math. Anal. Appl., 341:1 (2008), 309–317
- S. Dutta, P. Shunmugaraj, “Weakly compactly LUR Banach spaces”, J. Math. Anal. Appl., 458:2 (2018), 1203–1213
- K. W. Anderson, Midpoint local uniform convexity, and other geometric properties of Banach spaces, Ph.D. thesis, Univ. of Illinois, Urbana–Champaign, IL, 1960, 52 pp.
- R. E. Megginson, An introduction to Banach space theory, Grad. Texts in Math., 183, Springer-Verlag, New York, 1998, xx+596 pp.
- Z. H. Zhang, C. Y. Liu, “Convexities and existence of the farthest point”, Abstr. Appl. Anal., 2011, 139597, 9 pp.
- I. G. Tsar'kov, “Local and global suns”, Russ. J. Math. Phys., 31:4 (2024), 765–773
Supplementary files
