Pfister forms and a conjecture due to Colliot–Thelène in the mixed characteristic case
- Authors: Panin I.A.1, Tyurin D.N.1,2
-
Affiliations:
- St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
- Leonard Euler International Mathematical Institute at Saint Petersburg (SPB LEIMI)
- Issue: Vol 88, No 5 (2024)
- Pages: 174-186
- Section: Articles
- URL: https://ogarev-online.ru/1607-0046/article/view/265540
- DOI: https://doi.org/10.4213/im9566
- ID: 265540
Cite item
Abstract
About the authors
Ivan Alexandrovich Panin
St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Email: paniniv@gmail.com
Doctor of physico-mathematical sciences
Dimitrii Nikolaevich Tyurin
St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences; Leonard Euler International Mathematical Institute at Saint Petersburg (SPB LEIMI)
Scopus Author ID: 57196744354
without scientific degree
References
- K. Česnavičius, “Grothendieck–Serre in the quasi-split unramified case”, Forum Math. Pi, 10 (2022), e9, 30 pp.
- J.-L. Colliot-Thelène, “Formes quadratiques sur les anneaux semi-locaux reguliers”, Colloque sur les formes quadratiques, 2 (Montpellier, 1977), Bull. Soc. Math. France Mem., 59, 1979, 13–31
- M. Ojanguren, I. Panin, “Rationally trivial hermitian spaces are locally trivial”, Math. Z., 237:1 (2001), 181–198
- I. Panin, “Rationally isotropic quadratic spaces are locally isotropic”, Invent. Math., 176:2 (2009), 397–403
- I. Panin, Moving lemmas in mixed characteristic and applications
- I. Panin, On Grothendieck–Serre conjecture in mixed characteristic for $SL_{1,D}$
- I. Panin, K. Pimenov, “Rationally isotropic quadratic spaces are locally isotropic. II”, Doc. Math., 2010, Extra vol.: A. A. Suslin's 60th birthday, 515–523
- I. Panin, K. Pimenov, “Rationally isotropic quadratic spaces are locally isotropic. III”, Алгебра и анализ, 27:6 (2015), 234–241
- S. Scully, “The Artin–Springer theorem for quadratic forms over semi-local rings with finite residue fields”, Proc. Amer. Math. Soc., 146:1 (2018), 1–13
Supplementary files
