Pfister forms and a conjecture due to Colliot–Thelène in the mixed characteristic case

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let $R$ be a regular local ring of mixed characteristic $(0,p)$, where $p\neq 2$ is a prime number.Suppose that the quotient ring $R/pR$ is also regular. We fix a non-degenerate Pfister form $Q(T_{1},\ldots,T_{2^{m}})$ over $R$and an invertible element $c$ in $R$. Then the equation $Q(T_{1},\ldots,T_{2^{m}})=c$ has a solution over $R$if and only if it has a solution over the fraction field $K$.

About the authors

Ivan Alexandrovich Panin

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

Email: paniniv@gmail.com
Doctor of physico-mathematical sciences

Dimitrii Nikolaevich Tyurin

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences; Leonard Euler International Mathematical Institute at Saint Petersburg (SPB LEIMI)

Scopus Author ID: 57196744354
without scientific degree

References

  1. K. Česnavičius, “Grothendieck–Serre in the quasi-split unramified case”, Forum Math. Pi, 10 (2022), e9, 30 pp.
  2. J.-L. Colliot-Thelène, “Formes quadratiques sur les anneaux semi-locaux reguliers”, Colloque sur les formes quadratiques, 2 (Montpellier, 1977), Bull. Soc. Math. France Mem., 59, 1979, 13–31
  3. M. Ojanguren, I. Panin, “Rationally trivial hermitian spaces are locally trivial”, Math. Z., 237:1 (2001), 181–198
  4. I. Panin, “Rationally isotropic quadratic spaces are locally isotropic”, Invent. Math., 176:2 (2009), 397–403
  5. I. Panin, Moving lemmas in mixed characteristic and applications
  6. I. Panin, On Grothendieck–Serre conjecture in mixed characteristic for $SL_{1,D}$
  7. I. Panin, K. Pimenov, “Rationally isotropic quadratic spaces are locally isotropic. II”, Doc. Math., 2010, Extra vol.: A. A. Suslin's 60th birthday, 515–523
  8. I. Panin, K. Pimenov, “Rationally isotropic quadratic spaces are locally isotropic. III”, Алгебра и анализ, 27:6 (2015), 234–241
  9. S. Scully, “The Artin–Springer theorem for quadratic forms over semi-local rings with finite residue fields”, Proc. Amer. Math. Soc., 146:1 (2018), 1–13

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Панин И.A., Тюрин Д.N.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».