Classification of weighted dual graphs consisting of $-2$-curves and exactly one $-3$-curve
- Authors: Yau S.S.1,2, Zhu Q.1, Zuo H.1
-
Affiliations:
- Department of Mathematical Sciences, School of Sciences, Tsinghua University
- Yanqi Lake Beijing Institute of Mathematical Sciences and Applications
- Issue: Vol 87, No 5 (2023)
- Pages: 232-270
- Section: Articles
- URL: https://ogarev-online.ru/1607-0046/article/view/140439
- DOI: https://doi.org/10.4213/im9337
- ID: 140439
Cite item
Abstract
Full Text

About the authors
Stephen S.-T. Yau
Department of Mathematical Sciences, School of Sciences, Tsinghua University; Yanqi Lake Beijing Institute of Mathematical Sciences and Applications
Qiwei Zhu
Department of Mathematical Sciences, School of Sciences, Tsinghua University
Huaiqing Zuo
Department of Mathematical Sciences, School of Sciences, Tsinghua University
References
- F. Hirzebruch, W. D. Neumann, S. S. Koh, Differentiable manifolds and quadratic forms, Lecture Notes in Pure and Appl. Math., 4, Marcel Dekker, New York, 1971, v+120 pp.
- H. B. Laufer, Normal two-dimensional singularities, Ann. of Math. Stud., 71, Princeton Univ. Press, Princeton, NJ, 1971, xi+161 pp.
- W. D. Neumann, “A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves”, Trans. Amer. Math. Soc., 268:2 (1981), 299–344
- M. Artin, “On isolated rational singularities of surfaces”, Amer. J. Math., 88 (1966), 129–136
- J. Stevens, “Simple surface singularities”, Algebr. Geom., 4:2 (2017), 160–176
- D. Lorenzini, “Wild quotient singularities of surfaces”, Math. Z., 275:1-2 (2013), 211–232
- J. Stevens, “On the classification of rational surface singularities”, J. Singul., 7 (2013), 108–133
- M. Tosun, A. Ozkan, Z. Oer, “On the classification of rational singularities of surfaces”, Int. J. Pure Appl. Math., 41:1 (2007), 85–110
- Lê Dũng Trang, M. Tosun, “Combinatorics of rational singularities”, Comment. Math. Helv., 79:3 (2004), 582–604
- H. B. Laufer, “On minimally elliptic singularities”, Amer. J. Math., 99:6 (1977), 1257–1295
- S. Ishii, “On isolated Gorenstein singularities”, Math. Ann., 270:4 (1985), 541–554
- K. Konno, “On the Yau cycle of a normal surface singularity”, Asian. J. Math., 16:2 (2012), 279–298
- K. Konno, “Certain normal surface singularities of general type”, Methods Appl. Anal., 24:1 (2017), 71–97
- K. Konno, D. Nagashima, “Maximal ideal cycles over normal surface singularities of Brieskorn type”, Osaka J. Math., 49:1 (2012), 225–245
- A. Nemethi, ““Weakly” elliptic Gorenstein singularities of surfaces”, Invent. Math., 137:1 (1999), 145–167
- T. Tomaru, “On Gorenstein surface singularities with fundamental genus $p_fgeq 2$ which satisfy some minimality conditions”, Pacific J. Math., 170:1 (1995), 271–295
- P. Wagreich, “Elliptic singularities of surfaces”, Amer. J. Math., 92:2 (1970), 419–454
- S. Shing Toung Yau, “On maximally elliptic singularities”, Trans. Amer. Math. Soc., 257:2 (1980), 269–329
- S. S.-T. Yau, Mingyi Zhang, Huaiqing Zuo, “Topological classification of simplest Gorenstein non-complete intersection singularities of dimension 2”, Asian J. Math., 19:4 (2015), 651–792
- Fan Chung, Yi-Jing Xu, S. S.-T. Yau, “Classification of weighted dual graphs with only complete intersection singularities structures”, Trans. Amer. Math. Soc., 361:7 (2009), 3535–3596
- G. Müller, “Symmetries of surface singularities”, J. London Math. Soc. (2), 59:2 (1999), 491–506
- Ж. Серр, Алгебраические группы и поля классов, Мир, М., 1968, 285 с.
- H. B. Laufer, “On rational singularities”, Amer. J. Math., 94:2 (1972), 597–608
- H. Grauert, “Über Modifikationen und exzeptionelle analytische Mengen”, Math. Ann., 146 (1962), 331–368
- T. Okuma, “The geometric genus of splice quotient singularities”, Trans. Amer. Math. Soc., 360:12 (2008), 6643–6659
- W. D. Neumann, J. Wahl, “Complete intersection singularities of splice type as universal abelian covers”, Geom. Topol., 9 (2005), 699–755
- M. Tomari, “Maximal-ideal-adic filtration on $R^1psi_*mathscr O_{tilde{V}}$ for normal two-dimensional singularities”, Complex analytic singularities, Adv. Stud. Pure Math., 8, North-Holland, Amsterdam, 1987, 633–647
- J. Nagy, A. Nemethi, “The Abel map for surface singularities II. Generic analytic structure”, Adv. Math., 371 (2020), 107268, 38 pp.
Supplementary files
