On the positivity of direct image bundles
- Авторы: Li Z.1, Щаньюй Чжоу X.2,3
-
Учреждения:
- School of Science, Beijing University of Posts and Telecommunications
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences
- Лаборатория Математики имени Хуа Ло-Кена, Китайская Академия Наук
- Выпуск: Том 87, № 5 (2023)
- Страницы: 140-163
- Раздел: Статьи
- URL: https://ogarev-online.ru/1607-0046/article/view/140434
- DOI: https://doi.org/10.4213/im9336
- ID: 140434
Цитировать
Аннотация
Ключевые слова
Полный текст

Об авторах
Zhi Li
School of Science, Beijing University of Posts and Telecommunications
Xiangyu Щаньюй Чжоу
Academy of Mathematics and Systems Science, Chinese Academy of Sciences; Лаборатория Математики имени Хуа Ло-Кена, Китайская Академия Наук
Email: xyzhou@math.ac.cn
PhD
Список литературы
- B. Berndtsson, “Curvature of vector bundles associated to holomorphic fibrations”, Ann. of Math. (2), 169:2 (2009), 531–560
- B. Berndtsson, “Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains”, Ann. Inst. Fourier (Grenoble), 56:6 (2006), 1633–1662
- B. Berndtsson, M. Păun, “Bergman kernels and the pseudoeffectivity of relative canonical bundles”, Duke Math. J., 145:2 (2008), 341–378
- Fusheng Deng, Zhiwei Wang, Liyou Zhang, Xiangyu Zhou, New characterizations of plurisubharmonic functions and positivity of direct image sheaves
- Fusheng Deng, Jiafu Ning, Zhiwei Wang, Xiangyu Zhou, “Positivity of holomorphic vector bundles in terms of $L^p$-conditions for $overline{partial}$”, Math. Ann., 385:1-2 (2023), 575–607
- T. Inayama, “Nakano positivity of singular Hermitian metrics and vanishing theorems of Demailly–Nadel–Nakano type”, Algebr. Geom., 9:1 (2022), 69–92
- J.-P. Demailly, Complex analytic and differential geometry, 2012, 455 pp.
- Qi'an Guan, Xiangyu Zhou, “A solution of an $L^2$ extension problem with an optimal estimate and applications”, Ann. of Math. (2), 181:3 (2015), 1139–1208
- Qi'an Guan, XiangYu Zhou, “Strong openness of multiplier ideal sheaves and optimal $L^2$ extension”, Sci. China Math., 60:6 (2017), 967–976
- B. Berndtsson, L. Lempert, “A proof of the Ohsawa–Takegoshi theorem with sharp estimates”, J. Math. Soc. Japan, 68:4 (2016), 1461–1472
- A. Prekopa, “On logarithmic concave measures and functions”, Acta Sci. Math. (Szeged), 34 (1973), 335–343
- C. O. Kiselman, “The partial Legendre transformation for plurisubharmonic functions”, Invent. Math., 49:2 (1978), 137–148
- B. Berndtsson, “Prekopa's theorem and Kiselman's minimum principle for plurisubharmonic functions”, Math. Ann., 312:4 (1998), 785–792
- K. Ball, F. Barthe, A. Naor, “Entropy jumps in the presence of a spectral gap”, Duke Math. J., 119:1 (2003), 41–63
- D. Cordero-Erausquin, “On Berndtsson's generalization of Prekopa's theorem”, Math. Z., 249:2 (2005), 401–410
- L. Hörmander, “$L^2$ estimates and existence theorems for the $overline{partial}$ operator”, Acta. Math., 113:1 (1965), 89–152
- So-Chin Chen, Mei-Chi Shaw, Partial differential equations in several complex variables, AMS/IP Stud. Adv. Math., 19, Amer. Math. Soc., Providence, RI; International Press, Boston, MA, 2001, xii+380 pp.
- J.-P. Demailly, “Estimations $L^2$ pour l'operateur $overline{partial}$ d'un fibre vectoriel holomorphe semi-positif au-dessus d'une variete Kählerienne complète”, Ann. Sci. Ecole Norm. Sup. (4), 15:3 (1982), 457–511
- J.-P. Demailly, Analytic methods in algebraic geometry, Surv. Mod. Math., 1, International Press, Somerville, MA; Higher Education Press, Beijing, 2010/2012, viii+231 pp.
- T. Ohsawa, $L^2$ approaches in several complex variables. Development of Oka–Cartan theory by $L^2$ estimates for the $overlinepartial$ operator, Springer Monogr. Math., Springer, Tokyo, 2015, ix+196 pp.
- Xiangyu Zhou, “A survey on $L^2$ extension problem”, Complex geometry and dynamics, Abel Symp., 10, Springer, Cham, 2015, 291–309
- T. Ohsawa, K. Takegoshi, “On the extension of $L^2$ holomorphic functions”, Math. Z., 195:2 (1987), 197–204
- W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987, xiv+416 pp.
- V. Guedj, A. Zeriahi, Degenerate complex Monge–Ampère equations, EMS Tracts Math., 26, Eur. Math. Soc. (EMS), Zürich, 2017, xxiv+472 pp.
- L. Hörmander, Notions of convexity, Progr. Math., 127, Birkhäuser Boston, Inc., Boston, MA, 1994, viii+414 pp.
- L. Lempert, “Modules of square integrable holomorphic germs”, Analysis meets geometry, Trends Math., Birkhäuser/Springer, Cham, 2017, 311–333
- Zhuo Liu, Hui Yang, Xiangyu Zhou, “New properties of multiplier submodule sheaves”, C. R. Math. Acad. Sci. Paris, 360 (2022), 1205–1212
- Zhuo Liu, Hui Yang, Xiangyu Zhou, On the multiplier submodule sheaves associated to singular Nakano semi-positive metrics
- H. Raufi, Log concavity for matrix-valued functions and a matrix-valued Prekopa theorem
- F. Maitani, H. Yamaguchi, “Variation of Bergman metrics on Riemann surfaces”, Math. Ann., 330:3 (2004), 477–489
Дополнительные файлы
