Isogeny classes and endomorphism algebras of abelian varieties over finite fields
- Autores: Zarhin Y.G.1
-
Afiliações:
- Department of Mathematics, Pennsylvania State University
- Edição: Volume 87, Nº 3 (2023)
- Páginas: 56-74
- Seção: Articles
- URL: https://ogarev-online.ru/1607-0046/article/view/133910
- DOI: https://doi.org/10.4213/im9332
- ID: 133910
Citar
Resumo
Sobre autores
Yuri Zarhin
Department of Mathematics, Pennsylvania State University
Email: zarhin@math.psu.edu
Doctor of physico-mathematical sciences, Professor
Bibliografia
- З. И. Боревич, И. Р. Шафаревич, Теория чисел, 3-е изд., Наука, М., 1985, 504 с.
- F. Oort, “The isogeny class of a $mathrm{CM}$-type abelian variety is defined over a finite extension of the prime field”, J. Pure Appl. Algebra, 3:4 (1973), 399–408
- M. Deuring, “Die Typen der Multiplikatorenringe elliptischer Funktionenkörper”, Abh. Math. Sem. Hansischen Univ., 14 (1941), 197–272
- W. C. Waterhouse, “Abelian varieties over finite fields”, Ann. Sci. Ecole Norm. Sup. (4), 2:4 (1969), 521–560
- M. Deuring, “Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins. III”, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa, 1956 (1956), 37–76
- J.-P. Serre, J. Tate, “Good reduction of abelian varieties”, Ann. of Math. (2), 88:3 (1968), 492–517
- L. C. Washington, Introduction to cyclotomic fields, Grad. Texts in Math., 83, 2nd ed., Springer-Verlag, New York, 1997, xiv+487 pp.
- L. Watson, Isomorphic endomorphism algebras implies isogenous (for abelian varieties over finite fields)?
- H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Math. Lehrbücher und Monogr., 1, Akademie-Verlag, Berlin, 1952, xii+190 pp.
- P. E. Conner, J. Hurrelbrink, Class number parity, Ser. Pure Math., 8, World Sci. Publ., Singapore, 1988, xii+234 pp.
- J. Tate, “Endomorphisms of abelian varieties over finite fields”, Invent. Math., 2 (1966), 134–144
- T. Honda, “Isogeny classes of abelian varieties over finite fields”, J. Math. Soc. Japan, 20:1-2 (1968), 83–95
- Д. Тейт, “Классы изогений абелевых многообразий над конечными полями”, Математика, 14:6 (1970), 129–137
- А. Вейль, Основы теории чисел, Мир, М., 1972, 408 с.
- G. Shimura, Abelian varieties with complex multiplication and modular functions, Princeton Math. Ser., 46, Princeton Univ. Press, Princeton, NJ, 1998, xvi+218 pp.
- Д. Мамфорд, Абелевы многообразия, Мир, М., 1971, 299 с.
Arquivos suplementares
