Study of Weather and Climate Predictability at Seasonal Time Scales with Climate Model of INM RAS

封面

如何引用文章

全文:

详细

Prediction system of seasonal weather and climate anomalies is developed on the basis of INM RAS climate model. The model includes block of atmospheric dynamics with surface and soil model, block of ocean and sea ice dynamics, and aerosol block. Initial states were generated as anomalies of atmospheric, oceanic and ice states derived from reanalysis added to model climatology. Simulation of weather anomalies in December–February and June–August, 1980–2014 was considered. It is shown that model is capable to reproduce anomalies of winter and summer seasons, including anomalies associated with North Atlantic Oscillation (NAO), Pacific North American Oscillation (PNA). The quality of seasonal forecasts with developed prediction system is close to the quality of other present day seasonal prediction systems. Operative simulations of weather anomalies in June–August, 2022, are considered. It is possible to use successfully the prediction system in operative regime.

作者简介

Evgeny Volodin

Marchuk Institute of Numerical Mathematics, RAS

编辑信件的主要联系方式.
Email: volodinev@gmail.com
俄罗斯联邦, 8 Gubkina Str., Moscow, 119333, Russia

Vasilisa Vorobyeva

Marchuk Institute of Numerical Mathematics, RAS

Email: VVorobyeva@yandex.ru
俄罗斯联邦, 8 Gubkina Str., Moscow, 119333, Russia

Maria Tarasevich

Marchuk Institute of Numerical Mathematics, RAS

Email: mashatarasevich@gmail.com
俄罗斯联邦, 8 Gubkina Str., Moscow, 119333, Russia

参考

  1. B. Hoskins Quart. J. Roy. Meteor. Soc., 2013, 139, 573. doi: 10.1002/qj.1991.
  2. M.A. Tolstykh, E.M. Volodin, S.V. Kostrykin, R.Y. Fadeev, V.V. Shashkin, N.N. Bogoslovskii, R. M. Vilfand, D.B. Kiktev, T.V. Krasjuk, V.G. Mizyak, A.V. Shlyaeva, J.-F. Geleyn, I.N. Ezau, A.Y. Yurova Russ. Meteorol. Hydrol., 2015, 40(6), 374. doi: 10.3103/S1068373915060035.
  3. E.M. Volodin, E.V. Mortikov, S.V. Kostrykin, V.Ya. Galin, V.N. Lykossov, A.S. Gritsun, N.A. Diansky, A.V. Gusev, N.G. Yakovlev Clim. Dyn., 2017, 49, 3715. doi: 10.1007/s00382-017-3539-7.
  4. J.A. Carton, G.A. Chepurin, L. Chen J. Climate, 2018, 31(17), 6967. doi: 10.1175/JCLI-D-18-0149.1.
  5. D.P. Dee, S.M. Uppala, A.J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M.A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A.C.M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol et al. Quart. J. Roy. Met. Soc., 2011, 137, 553. doi: 10.1002/qj.828.
  6. R.F. Adler, G.J. Huffman, A. Chang, R. Ferraro, P. Xie, J. Janowiak, B Rudolf, U. Schneider, S. Curtis, D. Bolvin, A. Gruber, J. Susskind, P. Arkin J. Hydrometeor., 2003, 4, 1147. doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.
  7. N. Calvo, R.R. Garcia, W.J. Randel, D.R. Marsh J. Atmos. Sci., 2010, 67(7), 2331. doi: 10.1175/2010JAS3433.1.
  8. V.V. Vorobyeva, E.M. Volodin Russ. Meteorol. Hydrol., 2018, 43(11), 737. doi: 10.3103/S1068373918110043.
  9. WMO Lead Centre for Long-Range Forecast Multi-Model Ensemble. (https://wmolc.org).
  10. R. Hagedorn, F.J. Doblas-Reyes, T.N. Palmer Tellus A, 2005, 57, 219. doi: 10.1111/j.1600-0870.2005.00103.x.
  11. A. Weigel, M.A. Liniger, C. Appenzeller Quart. J. Royal. Meteorol. Soc., 2008, 134, 241. doi: 10.1002/qj.210.
  12. L. Batte, M. Deque Tellus A, 2011, 63, 283. doi: 10.1111/j.1600-0870.2010.00493.x.
  13. V.N. Stepanov, Yu.D. Resnyanskii, B.S. Strukov, A.A. Zelenko Russ. Meteorol. Hydrol., 2019, 1, 50. doi: 10.3103/S1068373919010047.
  14. Manual on the Global Data-Processing and Forecasting System. Attachment II.8: Standardized Verification System (SVS) for Long- Range Forecasts (LRF). Executive Summary. (https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/climatescience/climate-observations-projections-and-impacts/svslrf.pdf).
  15. H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo et al. Quart. J. Roy. Meteorol. Soc., 2020, 146, 1999. doi: 10.1002/qj.3803.
  16. Twenty-third Session of the North Eurasian Climate Forum (SEACOF-23): Final Consensus Decision (RF, Moscow, November 29-30, 2022) (in Russian). (http://seakc-old.meteoinfo.ru/images/seakc/neacof23/neacof23_consensus.pdf).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Volodin E.M., Vorobyeva V.V., Tarasevich M.A., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).