Study of Weather and Climate Predictability at Seasonal Time Scales with Climate Model of INM RAS

Capa

Citar

Texto integral

Resumo

Prediction system of seasonal weather and climate anomalies is developed on the basis of INM RAS climate model. The model includes block of atmospheric dynamics with surface and soil model, block of ocean and sea ice dynamics, and aerosol block. Initial states were generated as anomalies of atmospheric, oceanic and ice states derived from reanalysis added to model climatology. Simulation of weather anomalies in December–February and June–August, 1980–2014 was considered. It is shown that model is capable to reproduce anomalies of winter and summer seasons, including anomalies associated with North Atlantic Oscillation (NAO), Pacific North American Oscillation (PNA). The quality of seasonal forecasts with developed prediction system is close to the quality of other present day seasonal prediction systems. Operative simulations of weather anomalies in June–August, 2022, are considered. It is possible to use successfully the prediction system in operative regime.

Sobre autores

Evgeny Volodin

Marchuk Institute of Numerical Mathematics, RAS

Autor responsável pela correspondência
Email: volodinev@gmail.com
Rússia, 8 Gubkina Str., Moscow, 119333, Russia

Vasilisa Vorobyeva

Marchuk Institute of Numerical Mathematics, RAS

Email: VVorobyeva@yandex.ru
Rússia, 8 Gubkina Str., Moscow, 119333, Russia

Maria Tarasevich

Marchuk Institute of Numerical Mathematics, RAS

Email: mashatarasevich@gmail.com
Rússia, 8 Gubkina Str., Moscow, 119333, Russia

Bibliografia

  1. B. Hoskins Quart. J. Roy. Meteor. Soc., 2013, 139, 573. doi: 10.1002/qj.1991.
  2. M.A. Tolstykh, E.M. Volodin, S.V. Kostrykin, R.Y. Fadeev, V.V. Shashkin, N.N. Bogoslovskii, R. M. Vilfand, D.B. Kiktev, T.V. Krasjuk, V.G. Mizyak, A.V. Shlyaeva, J.-F. Geleyn, I.N. Ezau, A.Y. Yurova Russ. Meteorol. Hydrol., 2015, 40(6), 374. doi: 10.3103/S1068373915060035.
  3. E.M. Volodin, E.V. Mortikov, S.V. Kostrykin, V.Ya. Galin, V.N. Lykossov, A.S. Gritsun, N.A. Diansky, A.V. Gusev, N.G. Yakovlev Clim. Dyn., 2017, 49, 3715. doi: 10.1007/s00382-017-3539-7.
  4. J.A. Carton, G.A. Chepurin, L. Chen J. Climate, 2018, 31(17), 6967. doi: 10.1175/JCLI-D-18-0149.1.
  5. D.P. Dee, S.M. Uppala, A.J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M.A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A.C.M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol et al. Quart. J. Roy. Met. Soc., 2011, 137, 553. doi: 10.1002/qj.828.
  6. R.F. Adler, G.J. Huffman, A. Chang, R. Ferraro, P. Xie, J. Janowiak, B Rudolf, U. Schneider, S. Curtis, D. Bolvin, A. Gruber, J. Susskind, P. Arkin J. Hydrometeor., 2003, 4, 1147. doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.
  7. N. Calvo, R.R. Garcia, W.J. Randel, D.R. Marsh J. Atmos. Sci., 2010, 67(7), 2331. doi: 10.1175/2010JAS3433.1.
  8. V.V. Vorobyeva, E.M. Volodin Russ. Meteorol. Hydrol., 2018, 43(11), 737. doi: 10.3103/S1068373918110043.
  9. WMO Lead Centre for Long-Range Forecast Multi-Model Ensemble. (https://wmolc.org).
  10. R. Hagedorn, F.J. Doblas-Reyes, T.N. Palmer Tellus A, 2005, 57, 219. doi: 10.1111/j.1600-0870.2005.00103.x.
  11. A. Weigel, M.A. Liniger, C. Appenzeller Quart. J. Royal. Meteorol. Soc., 2008, 134, 241. doi: 10.1002/qj.210.
  12. L. Batte, M. Deque Tellus A, 2011, 63, 283. doi: 10.1111/j.1600-0870.2010.00493.x.
  13. V.N. Stepanov, Yu.D. Resnyanskii, B.S. Strukov, A.A. Zelenko Russ. Meteorol. Hydrol., 2019, 1, 50. doi: 10.3103/S1068373919010047.
  14. Manual on the Global Data-Processing and Forecasting System. Attachment II.8: Standardized Verification System (SVS) for Long- Range Forecasts (LRF). Executive Summary. (https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/climatescience/climate-observations-projections-and-impacts/svslrf.pdf).
  15. H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo et al. Quart. J. Roy. Meteorol. Soc., 2020, 146, 1999. doi: 10.1002/qj.3803.
  16. Twenty-third Session of the North Eurasian Climate Forum (SEACOF-23): Final Consensus Decision (RF, Moscow, November 29-30, 2022) (in Russian). (http://seakc-old.meteoinfo.ru/images/seakc/neacof23/neacof23_consensus.pdf).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Volodin E.M., Vorobyeva V.V., Tarasevich M.A., 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».