Temperature Effects and Mechanisms of the Action of O, N, and F Atoms on SiOCH Nanoporous Dielectrics
- Autores: Lopaev D.V.1, Rakhimova T.V.1, Mankelevich Y.A.1, Voronina E.N.1
-
Afiliações:
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
- Edição: Volume 118, Nº 2 (2023): THEMED SECTION: FUNDAMENTAL PROBLEMS OF MULTILEVEL METALLIZATION SYSTEMS FOR ULTRA-LARGE INTEGRATED CIRCUITS
- Páginas: 77-87
- Seção: THEMED SECTION: FUNDAMENTAL SCIENTIFIC RESEARCH IN THE FIELD OF NATURAL SCIENCES
- URL: https://ogarev-online.ru/1605-8070/article/view/301141
- DOI: https://doi.org/10.22204/2410-4639-2023-118-02-77-87
- ID: 301141
Citar
Texto integral
Resumo
Understanding the detailed mechanisms of the action of active radicals on SiOCH nanoporous dielectrics with low permittivity k used as interlayer SiOCH low-k dielectrics in a new generation of integrated circuits is important for developing recipes for reducing the degradation of low-k dielectrics in technological processes of plasma-chemical processing. In this work, the features of these mechanisms of interaction of fluorine, nitrogen, and oxygen atoms with low-k dielectrics with different pore sizes and degrees of porosity are studied experimentally and theoretically. The samples were treated at low temperatures with O, N, and F atoms in plasma downstream of an inductive discharge in O2, N2, and SF6 gases, respectively. Lowering the temperature led to different (for different atoms) slowdowns in the degradation of surface CH3 groups, which ensured the hydrophobicity of the porous medium and low-k values of dielectrics. An analysis of the results obtained using DFT (density functional theory) calculations and ab initio MD (molecular dynamics) modeling of reaction mechanisms revealed branched reactions of atoms with surface Si–CH3 groups and with other sequentially formed groups.
Palavras-chave
Sobre autores
Dmitry Lopaev
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Autor responsável pela correspondência
Email: d.lopaev@gmail.com
Rússia, 1-2 Leninskie Gory, GSP-1, Moscow, 119991, Russia
Tatyana Rakhimova
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Email: trakhimova@mics.msu.ru
Rússia, 1-2 Leninskie Gory, GSP-1, Moscow, 119991, Russia
Yuri Mankelevich
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Email: ymankelevich@mics.msu.ru
Rússia, 1-2 Leninskie Gory, GSP-1, Moscow, 119991, Russia
Ekaterina Voronina
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Email: voroninaen@nsrd.sinp.msu.ru
Professor
Rússia, 1-2 Leninskie Gory, GSP-1, Moscow, 119991, RussiaBibliografia
- M. Baklanov, P.S. Ho, E. Zschech Advanced Interconnects for ULSI Technology, UK, Chichester, John Wiley & Sons, Ltd, 2012, 608 pp. doi: 10.1002/9781119963677.
- M.R. Baklanov, J.-F. de Marneffe, D. Shamiryan, A.M. Urbanowicz, H. Shi, T.V. Rakhimova, H. Huang, P.S. Ho J. Appl. Phys., 2013, 113(4), 041101. doi: 10.1063/1.4765297.
- J. Lee, D. B. Graves J. Phys. D: Appl. Phys., 2010, 43, 425201. doi: 10.1088/0022-3727/43/42/425201.
- O.V. Braginsky, A.S. Kovalev, D.V. Lopaev, E.M. Malykhin, Yu.A. Mankelevich, T.V. Rakhimova, A.T. Rakhimov, A.N. Vasilieva, S.M. Zyryanov, M.R.Baklanov J. Appl. Phys., 2010, 108(7), 073303. doi: 10.1063/1.3486084.
- T.V. Rakhimova, D.V. Lopaev, Y.A. Mankelevich, A.T. Rakhimov, S.M. Zyryanov, K.A. Kurchikov, N.N. Novikova, M.R. Baklanov J. Phys. D: Appl. Phys., 2015, 48, 175203. doi: 10.1088/0022-3727/48/17/175203.
- E.N. Voronina, Yu.A. Mankelevich, T.V. Rakhimova, D.V. Lopaev J. Vac. Sci. Technol. A, 2019, 37(6), 061304. doi: 10.1116/1.5122655.
- D.V. Lopaev, S.M. Zyryanov, A.I. Zotovich, T.V. Rakhimova, Yu.A. Mankelevich, E.N. Voronina J. Phys. D: Appl. Phys., 2020, 53, 175203. doi: 10.1088/1361-6463/ab6e99.
- T.V. Rakhimova, A.T. Rakhimov, Y.A. Mankelevich, D.V. Lopaev, A.S. Kovalev, A.N. Vasil’eva, O.V. Proshina, O.V. Braginsky, S.M. Zyryanov, K. Kurchikov, N.N. Novikova, M.R. Baklanov Appl. Phys. Lett., 2013, 102(11), 111902. doi: 10.1063/1.4795792.
- M.R. Baklanov, V. Jousseaume, T.V. Rakhimova, D.V. Lopaev, Yu.A. Mankelevich, V.V. Afanas’ev, J.L. Shohet, S.W. King, E.T. Ryan Appl. Phys. Rev., 2019, 6, 011301. doi: 10.1063/1.5054304.
- D.V. Lopaev, A.V. Volynets, S.M. Zyryanov, A.I. Zotovich, A.T. Rakhimov J. Phys. D: Appl. Phys., 2017, 50(7), 075202. doi: 10.1088/1361-6463/50/7/075202.
- L. Zhang, R. Ljazouli, P. Lefaucheux, T. Tillocher, R. Dussart, Y.A. Mankelevich, J.-F. de Marneffe, S. de Gendt, M.R. Baklanov ECS J. Solid State Sci. Technol., 2013, 2(6), N131. doi: 10.1149/2.001306jss.
- Yu.A. Mankelevich, E.N. Voronina, T.V. Rakhimova, A.P. Palov, D.V. Lopaev, S.M. Zyryanov, M.R. Baklanov J. Phys. D: Appl. Phys., 2016, 49(34), 345203. doi: 10.1088/0022-3727/49/34/345203.
- Yu.A. Mankelevich, E.N. Voronina, T.V. Rakhimova, A.P. Palov, D.V. Lopaev, S.M. Zyryanov, A.I. Zotovich, M.R. Baklanov Eur. Phys. J. D, 2017, 71, 126. doi: 10.1140/epjd/e2017-70619-7.
- E.N. Voronina, Yu.A. Mankelevich, T.V. Rakhimova, A.P. Palov, D.V. Lopaev, S.M. Zyryanov, A.I. Zotovich, M.R. Baklanov Eur. Phys. J. D, 2017, 71, 111. doi: 10.1140/epjd/e2017-70618-8.
- A.D. Kulkarni, D.G. Truhlar, S. Goverapet Srinivasan, A.C. Van Duin, P. Norman, T.E. Schwartzentruber J. Phys. Chem. C, 2013, 117, 258. doi: 10.1021/jp3086649.
- S. Plimpton J. Comp. Phys., 1995, 117, 1. doi: 10.1006/jcph.1995.1039.
- V.V. Voevodin, A.S. Antonov, D.A. Nikitenko, P.A. Shvets, S.I. Sobolev, I.Yu. Sidorov, K.S. Stefanov, V.V. Voevodin, S.A. Zhumatiy Supercomp. Frontiers Innov., 2019, 6(2), 4. doi: 10.14529/jsfi190201.
- D.R.F. Burgess, M.R.Jr. Zachariah, W. Tsang, P.R. Westmoreland Prog. Energy Combust. Sci., 1995, 21(6), 453. doi: 10.1016/0360-1285(95)00009-7.
- N. Sadeghi, C. Foissac, P. Supiot J. Phys. D: Appl. Phys., 2001, 34, 1779. doi: 10.1088/0022-3727/34/12/304.
Arquivos suplementares
