Temperature Effects and Mechanisms of the Action of O, N, and F Atoms on SiOCH Nanoporous Dielectrics
- Авторлар: Lopaev D.V.1, Rakhimova T.V.1, Mankelevich Y.A.1, Voronina E.N.1
-
Мекемелер:
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
- Шығарылым: Том 118, № 2 (2023): THEMED SECTION: FUNDAMENTAL PROBLEMS OF MULTILEVEL METALLIZATION SYSTEMS FOR ULTRA-LARGE INTEGRATED CIRCUITS
- Беттер: 77-87
- Бөлім: THEMED SECTION: FUNDAMENTAL SCIENTIFIC RESEARCH IN THE FIELD OF NATURAL SCIENCES
- URL: https://ogarev-online.ru/1605-8070/article/view/301141
- DOI: https://doi.org/10.22204/2410-4639-2023-118-02-77-87
- ID: 301141
Дәйексөз келтіру
Толық мәтін
Аннотация
Understanding the detailed mechanisms of the action of active radicals on SiOCH nanoporous dielectrics with low permittivity k used as interlayer SiOCH low-k dielectrics in a new generation of integrated circuits is important for developing recipes for reducing the degradation of low-k dielectrics in technological processes of plasma-chemical processing. In this work, the features of these mechanisms of interaction of fluorine, nitrogen, and oxygen atoms with low-k dielectrics with different pore sizes and degrees of porosity are studied experimentally and theoretically. The samples were treated at low temperatures with O, N, and F atoms in plasma downstream of an inductive discharge in O2, N2, and SF6 gases, respectively. Lowering the temperature led to different (for different atoms) slowdowns in the degradation of surface CH3 groups, which ensured the hydrophobicity of the porous medium and low-k values of dielectrics. An analysis of the results obtained using DFT (density functional theory) calculations and ab initio MD (molecular dynamics) modeling of reaction mechanisms revealed branched reactions of atoms with surface Si–CH3 groups and with other sequentially formed groups.
Негізгі сөздер
Авторлар туралы
Dmitry Lopaev
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: d.lopaev@gmail.com
Ресей, 1-2 Leninskie Gory, GSP-1, Moscow, 119991, Russia
Tatyana Rakhimova
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Email: trakhimova@mics.msu.ru
Ресей, 1-2 Leninskie Gory, GSP-1, Moscow, 119991, Russia
Yuri Mankelevich
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Email: ymankelevich@mics.msu.ru
Ресей, 1-2 Leninskie Gory, GSP-1, Moscow, 119991, Russia
Ekaterina Voronina
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Email: voroninaen@nsrd.sinp.msu.ru
Professor
Ресей, 1-2 Leninskie Gory, GSP-1, Moscow, 119991, RussiaӘдебиет тізімі
- M. Baklanov, P.S. Ho, E. Zschech Advanced Interconnects for ULSI Technology, UK, Chichester, John Wiley & Sons, Ltd, 2012, 608 pp. doi: 10.1002/9781119963677.
- M.R. Baklanov, J.-F. de Marneffe, D. Shamiryan, A.M. Urbanowicz, H. Shi, T.V. Rakhimova, H. Huang, P.S. Ho J. Appl. Phys., 2013, 113(4), 041101. doi: 10.1063/1.4765297.
- J. Lee, D. B. Graves J. Phys. D: Appl. Phys., 2010, 43, 425201. doi: 10.1088/0022-3727/43/42/425201.
- O.V. Braginsky, A.S. Kovalev, D.V. Lopaev, E.M. Malykhin, Yu.A. Mankelevich, T.V. Rakhimova, A.T. Rakhimov, A.N. Vasilieva, S.M. Zyryanov, M.R.Baklanov J. Appl. Phys., 2010, 108(7), 073303. doi: 10.1063/1.3486084.
- T.V. Rakhimova, D.V. Lopaev, Y.A. Mankelevich, A.T. Rakhimov, S.M. Zyryanov, K.A. Kurchikov, N.N. Novikova, M.R. Baklanov J. Phys. D: Appl. Phys., 2015, 48, 175203. doi: 10.1088/0022-3727/48/17/175203.
- E.N. Voronina, Yu.A. Mankelevich, T.V. Rakhimova, D.V. Lopaev J. Vac. Sci. Technol. A, 2019, 37(6), 061304. doi: 10.1116/1.5122655.
- D.V. Lopaev, S.M. Zyryanov, A.I. Zotovich, T.V. Rakhimova, Yu.A. Mankelevich, E.N. Voronina J. Phys. D: Appl. Phys., 2020, 53, 175203. doi: 10.1088/1361-6463/ab6e99.
- T.V. Rakhimova, A.T. Rakhimov, Y.A. Mankelevich, D.V. Lopaev, A.S. Kovalev, A.N. Vasil’eva, O.V. Proshina, O.V. Braginsky, S.M. Zyryanov, K. Kurchikov, N.N. Novikova, M.R. Baklanov Appl. Phys. Lett., 2013, 102(11), 111902. doi: 10.1063/1.4795792.
- M.R. Baklanov, V. Jousseaume, T.V. Rakhimova, D.V. Lopaev, Yu.A. Mankelevich, V.V. Afanas’ev, J.L. Shohet, S.W. King, E.T. Ryan Appl. Phys. Rev., 2019, 6, 011301. doi: 10.1063/1.5054304.
- D.V. Lopaev, A.V. Volynets, S.M. Zyryanov, A.I. Zotovich, A.T. Rakhimov J. Phys. D: Appl. Phys., 2017, 50(7), 075202. doi: 10.1088/1361-6463/50/7/075202.
- L. Zhang, R. Ljazouli, P. Lefaucheux, T. Tillocher, R. Dussart, Y.A. Mankelevich, J.-F. de Marneffe, S. de Gendt, M.R. Baklanov ECS J. Solid State Sci. Technol., 2013, 2(6), N131. doi: 10.1149/2.001306jss.
- Yu.A. Mankelevich, E.N. Voronina, T.V. Rakhimova, A.P. Palov, D.V. Lopaev, S.M. Zyryanov, M.R. Baklanov J. Phys. D: Appl. Phys., 2016, 49(34), 345203. doi: 10.1088/0022-3727/49/34/345203.
- Yu.A. Mankelevich, E.N. Voronina, T.V. Rakhimova, A.P. Palov, D.V. Lopaev, S.M. Zyryanov, A.I. Zotovich, M.R. Baklanov Eur. Phys. J. D, 2017, 71, 126. doi: 10.1140/epjd/e2017-70619-7.
- E.N. Voronina, Yu.A. Mankelevich, T.V. Rakhimova, A.P. Palov, D.V. Lopaev, S.M. Zyryanov, A.I. Zotovich, M.R. Baklanov Eur. Phys. J. D, 2017, 71, 111. doi: 10.1140/epjd/e2017-70618-8.
- A.D. Kulkarni, D.G. Truhlar, S. Goverapet Srinivasan, A.C. Van Duin, P. Norman, T.E. Schwartzentruber J. Phys. Chem. C, 2013, 117, 258. doi: 10.1021/jp3086649.
- S. Plimpton J. Comp. Phys., 1995, 117, 1. doi: 10.1006/jcph.1995.1039.
- V.V. Voevodin, A.S. Antonov, D.A. Nikitenko, P.A. Shvets, S.I. Sobolev, I.Yu. Sidorov, K.S. Stefanov, V.V. Voevodin, S.A. Zhumatiy Supercomp. Frontiers Innov., 2019, 6(2), 4. doi: 10.14529/jsfi190201.
- D.R.F. Burgess, M.R.Jr. Zachariah, W. Tsang, P.R. Westmoreland Prog. Energy Combust. Sci., 1995, 21(6), 453. doi: 10.1016/0360-1285(95)00009-7.
- N. Sadeghi, C. Foissac, P. Supiot J. Phys. D: Appl. Phys., 2001, 34, 1779. doi: 10.1088/0022-3727/34/12/304.
Қосымша файлдар
