Broadband IR Photoconductivity of a Silicon p-n Junction with the Participation of Donor States of Sulfur and Its Temperature Control
- Authors: Kudryashov S.I.1, Nastulyavichus A.A.1, Boldyrev K.N.2, Kovalev M.S.1
-
Affiliations:
- Р.N. Lebedev Physical Institute, RAS
- Institute of Spectroscopy, RAS
- Issue: Vol 117, No 1 (2023): ТЕМАТИЧЕСКИЙ БЛОК: СОВРЕМЕННЫЕ ПРОБЛЕМЫ ФОТОНИКИ ИНФРАКРАСНОГО ДИАПАЗОНА
- Pages: 99-108
- Section: THEMED SECTION: FUNDAMENTAL SCIENTIFIC RESEARCH IN THE FIELD OF NATURAL SCIENCES
- URL: https://ogarev-online.ru/1605-8070/article/view/299518
- DOI: https://doi.org/10.22204/2410-4639-2023-117-01-99-108
- ID: 299518
Cite item
Full Text
Abstract
A new physical effect of strong low-temperature broadband (2–40 μm) IR photoconductivity in the p–n junction of silicon formed by an n-hyperdoped layer on a p-doped substrate has been studied. Broadband IR photoconductivity is provided by a clearly pronounced discrete spectrum of neutral and singly ionized donor states of the substitutional atomic impurity and sulfur clusters near the bottom of the conduction band (the so-called “intermediate” band up to 0.6 eV wide), the population distribution within which is smooth over the spectrum, well pronounced, and controlled in amplitude by thermal excitation in the range of 5–250 K. As a result, on the basis of a single silicon photocell, the choice of temperature mode allows registration of radiation in the far-near infrared range for a wide range of diverse practical problems – solar energy, thermal imaging and bioimaging.
About the authors
Sergey I. Kudryashov
Р.N. Lebedev Physical Institute, RAS
Author for correspondence.
Email: kudryashovsi@lebedev.ru
Russian Federation, 53 Leninsky Ave., Moscow, 119991, Russia
Alena A. Nastulyavichus
Р.N. Lebedev Physical Institute, RAS
Email: nastulyavichusaa@lebedev.ru
Russian Federation, 53 Leninsky Ave., Moscow, 119991, Russia
Kirill N. Boldyrev
Institute of Spectroscopy, RAS
Email: kn.boldyrev@gmail.com
Russian Federation, 5 Fizicheskaya Str., Troitsk, Moscow, 108840, Russia
Mikhail S. Kovalev
Р.N. Lebedev Physical Institute, RAS
Email: kovalevms@lebedev.ru
53 Leninsky Ave., Moscow, 119991, Russia
References
- S. Kudryashov, A. Nastulyavichus, G. Krasin, K. Khamidullin, K. Boldyrev, D. Kirilenko, A. Yachmenev, D. Ponomarev, G. Komandin, S. Lebedev, D. Prikhod’ko, M. Kovalev. Opt. Laser Technol., 2023, 158, 108873. doi: 10.1016/j.optlastec.2022.108873.
- L. Gyongyosi, S. Imre. Comput. Sci. Rev., 2019, 31, 51. doi: 10.1016/j.cosrev.2018.11.002.
- N. Volet, A. Spott, E.J. Stanton, M.L. Davenport, L. Chang, I.D. Peters, T.C. Briles, I. Vurgaftman, J.R. Meyer, J.E. Bowers. Laser Photonics Rev., 2017, 11(2), 1600165. doi: 10.1002/lpor.201600165.
- D.J. Thomson, L. Shen, J.J. Ackert, E. Huante-Ceron, A.P. Knights, M. Nedeljkovic, A.C. Peacock, G.Z. Mashanovich. Opt. Express, 2014, 22(9), 10825. doi: 10.1364/OE.22.010825.
- V. Kesaev, A. Nastulyavichus, S. Kudryashov, M. Kovalev, N. Stsepuro, G. Krasin. Opt. Mater. Express, 2021, 11(7), 1971. doi: 10.1364/OME.428047.
- V.V. Gavrushko, A.S. Ionov, O.R. Kadriev, V.A. Lastkin. Tech. Phys., 2017, 62, 338. doi: 10.1134/S1063784217020104.
- S.Q. Lim, J.S. Williams. Micro, 2022, 2(1), 1. doi: 10.3390/micro2010001.
- Z. Tong, M. Bu, Y. Zhang, D. Yang, X. Pi. J. Semicond., 2022, 43(9), 093101. doi: 10.1088/1674-4926/43/9/093101.
- S. Kudryashov, A. Nastulyavichus, D. Kirilenko, P. Brunkov, A. Shakhmin, A. Rudenko, N. Melnik, R. Khmelnitskii, V. Martovitskii, M. Uspenskaya, D. Prikhodko, S. Tarelkin, A. Galkin, T. Drozdova, A. Ionin. ACS Appl. Electron. Mater., 2021, 3(2), 769. doi: 10.1021/acsaelm.0c00914.
- M.A. Foster, A.C. Turner, J.E. Sharping, B.S. Schmidt, M. Lipson, A.L. Gaeta. Nature, 2006, 441(7096), 960. doi: 10.1038/nature04932.
- M.A. Foster, R. Salem, D.F. Geraghty, A.C. Turner-Foster, M. Lipson, A.L. Gaeta. Nature, 2008, 456(7218), 81. doi: 10.1038/nature07430.
- V.S. Vavilov, A.R. Chelyadinskij. Physics–Uspekhi, 1995, 165(3), 347. doi: 10.3367/UFNr.0165.199503g.0347.
- P. Migliorato, C.T. Elliott. Solid State Electron., 1978, 21(2), 443. doi: 10.1016/0038-1101(78)90276-9.
- Yu.A. Astrov, S.A. Lynch, V.B. Shuman, L.M. Portsel, A.A. Machova, A.N. Lodygin. Semiconductors [Fizika i tekhnika poluprovodnikov], 2013, 47(2), 211 (in Russian).
- B.K. Newman, M.J. Sher, E. Mazur, T. Buonassisi. Appl. Phys. Lett., 2011, 98(25), 251905. doi: 10.1063/1.3599450.
- C.B. Simmons, A.J. Akey, J.J. Krich, J.T. Sullivan, D. Recht, M.J. Aziz, T. Buonassisi. J. Appl. Phys., 2013, 114(24), 243514. doi: 10.1063/1.4854835.
- I. Umezu, J.M. Warrender, S. Charnvanichborikarn, A. Kohno, J.S. Williams, M. Tabbal, D.G. Papazoglou, Zhang Xi-Ch., M.J. Aziz. J. Appl. Phys., 2013, 113(21), 213501. doi: 10.1063/1.4804935.
- M.J. Sher, E. Mazur. Appl. Phys. Lett., 2014, 105(3), 032103. doi: 10.1063/1.4890618.
- L.P. Cao, Z.D. Chen, C.L. Zhang, J.H. Yao. Front. Phys., 2015, 10(4), 1. doi: 10.1007/s11467-015-0468-y.
- K.F. Wang, P. Liu, S. Qu, Y. Wang, Z. Wang. J. Mater. Sci., 2015, 50(9), 3391. doi: 10.1007/s10853-015-8895-2.
- M.V. Limaye, S.C. Chen, C.Y. Lee, L.Y. Chen, S.B. Singh, Y.C. Shao, Y.F. Wang, S.H. Hsieh, H.C. Hsueh, L.W. Chiou, C.H. Chen, L.Y. Jang, C.L. Cheng, W.F. Pong, Y.F. Hu. Sci. Rep., 2015, 5(1), 1. doi: 10.1038/srep11466.
- T. Gimpel, S. Winter, M. Bossmeyer, W. Schade. Sol. Energy Mater. Sol. Cells., 2018, 180, 168. doi: 10.1016/j.solmat.2018.03.001.
- B. Franta, D. Pastor, H.H. Gandhi, P.H. Rekemeyer, S. Gradečak, M.J. Aziz, E. Mazur. J. Appl. Phys., 2015, 118(22), 225303. doi: 10.1063/1.4937149.
- S. Paulus, P. McKearney, F. Völklein, S. Kontermann. AIP Advances, 2021, 11(7), 075014. doi: 10.1063/5.0044678.
- E. Janzén, R. Stedman, G. Grossmann, H.G. Grimmeiss. Phys. Rev. B, 1984, 29(4), 1907. doi: 10.1103/PhysRevB.29.1907.
- P. Wagner, C. Holm, R. Oeder, W. Zulehner. In ASSP, Vol. 24, FRG, Berlin, Heidelberg: Springer Verlag, 1984, pp. 191–228. doi: 10.1007/BFb0107451.
- R.E. Peale, K. Muro, A.J. Sievers. Materials Science Forum, 1991, 65–66, 151. doi: 10.4028/ href='www.scientific.net/MSF.65-66.151' target='_blank'>www.scientific.net/MSF.65-66.151.
- X. Jin, Q. Wu, S. Huang, G. Deng, J. Yao, H. Huang, P. Zhao, J. Xu. Opt. Mater., 2021, 113, 110874. doi: 10.1016/j.optmat.2021.110874.
- S. Kudryashov, K. Boldyrev, A. Nastulyavichus, D. Prikhod’ko, S. Tarelkin, D. Kirilenko, P. Brunkov, A. Shakhmin, R. Khamidullin, G. Krasin, M. Kovalev. Opt. Mater. Express, 2021, 11(11), 3792. doi: 10.1364/OME.438023.
- S.I. Kudryashov, L.V. Nguyen, D.A. Kirilenko, P.N. Brunkov, A.A. Rudenko, N.I. Busleev, A.L. Shakhmin, A.V. Semencha, R.A. Khmelnitsky, N.N. Melnik, I.N. Saraeva, A.A. Nastulyavichus, A.A. Ionin, E.R. Tolordava, Y.M. Romanova. ACS Appl. Nano Mater., 2018, 1(6), 2461. doi: 10.1021/acsanm.8b00392.
- N. Stsepuro, M. Kovalev, G. Krasin, I. Podlesnykh, Y. Gulina, S. Kudryashov. Photonics, 2022, 9, 815. doi: 10.3390/photonics9110815.
- D.V. Lavrukhin, A.E. Yachmenev, Y.G. Goncharov, K.I. Zaytsev, R.A. Khabibullin, A.M. Buryakov, E.D. Mishina, D.S. Ponomarev. IEEE Trans. Terahertz Sci. Technol., 2021, 11(4), 417. doi: 10.1109/TTHZ.2021.3079977.
Supplementary files
