Broadband IR Photoconductivity of a Silicon p-n Junction with the Participation of Donor States of Sulfur and Its Temperature Control

封面

如何引用文章

全文:

详细

A new physical effect of strong low-temperature broadband (2–40 μm) IR photoconductivity in the p–n junction of silicon formed by an n-hyperdoped layer on a p-doped substrate has been studied. Broadband IR photoconductivity is provided by a clearly pronounced discrete spectrum of neutral and singly ionized donor states of the substitutional atomic impurity and sulfur clusters near the bottom of the conduction band (the so-called “intermediate” band up to 0.6 eV wide), the population distribution within which is smooth over the spectrum, well pronounced, and controlled in amplitude by thermal excitation in the range of 5–250 K. As a result, on the basis of a single silicon photocell, the choice of temperature mode allows registration of radiation in the far-near infrared range for a wide range of diverse practical problems – solar energy, thermal imaging and bioimaging.

作者简介

Sergey Kudryashov

Р.N. Lebedev Physical Institute, RAS

编辑信件的主要联系方式.
Email: kudryashovsi@lebedev.ru
俄罗斯联邦, 53 Leninsky Ave., Moscow, 119991, Russia

Alena Nastulyavichus

Р.N. Lebedev Physical Institute, RAS

Email: nastulyavichusaa@lebedev.ru
俄罗斯联邦, 53 Leninsky Ave., Moscow, 119991, Russia

Kirill Boldyrev

Institute of Spectroscopy, RAS

Email: kn.boldyrev@gmail.com
俄罗斯联邦, 5 Fizicheskaya Str., Troitsk, Moscow, 108840, Russia

Mikhail Kovalev

Р.N. Lebedev Physical Institute, RAS

Email: kovalevms@lebedev.ru
53 Leninsky Ave., Moscow, 119991, Russia

参考

  1. S. Kudryashov, A. Nastulyavichus, G. Krasin, K. Khamidullin, K. Boldyrev, D. Kirilenko, A. Yachmenev, D. Ponomarev, G. Komandin, S. Lebedev, D. Prikhod’ko, M. Kovalev. Opt. Laser Technol., 2023, 158, 108873. doi: 10.1016/j.optlastec.2022.108873.
  2. L. Gyongyosi, S. Imre. Comput. Sci. Rev., 2019, 31, 51. doi: 10.1016/j.cosrev.2018.11.002.
  3. N. Volet, A. Spott, E.J. Stanton, M.L. Davenport, L. Chang, I.D. Peters, T.C. Briles, I. Vurgaftman, J.R. Meyer, J.E. Bowers. Laser Photonics Rev., 2017, 11(2), 1600165. doi: 10.1002/lpor.201600165.
  4. D.J. Thomson, L. Shen, J.J. Ackert, E. Huante-Ceron, A.P. Knights, M. Nedeljkovic, A.C. Peacock, G.Z. Mashanovich. Opt. Express, 2014, 22(9), 10825. doi: 10.1364/OE.22.010825.
  5. V. Kesaev, A. Nastulyavichus, S. Kudryashov, M. Kovalev, N. Stsepuro, G. Krasin. Opt. Mater. Express, 2021, 11(7), 1971. doi: 10.1364/OME.428047.
  6. V.V. Gavrushko, A.S. Ionov, O.R. Kadriev, V.A. Lastkin. Tech. Phys., 2017, 62, 338. doi: 10.1134/S1063784217020104.
  7. S.Q. Lim, J.S. Williams. Micro, 2022, 2(1), 1. doi: 10.3390/micro2010001.
  8. Z. Tong, M. Bu, Y. Zhang, D. Yang, X. Pi. J. Semicond., 2022, 43(9), 093101. doi: 10.1088/1674-4926/43/9/093101.
  9. S. Kudryashov, A. Nastulyavichus, D. Kirilenko, P. Brunkov, A. Shakhmin, A. Rudenko, N. Melnik, R. Khmelnitskii, V. Martovitskii, M. Uspenskaya, D. Prikhodko, S. Tarelkin, A. Galkin, T. Drozdova, A. Ionin. ACS Appl. Electron. Mater., 2021, 3(2), 769. doi: 10.1021/acsaelm.0c00914.
  10. M.A. Foster, A.C. Turner, J.E. Sharping, B.S. Schmidt, M. Lipson, A.L. Gaeta. Nature, 2006, 441(7096), 960. doi: 10.1038/nature04932.
  11. M.A. Foster, R. Salem, D.F. Geraghty, A.C. Turner-Foster, M. Lipson, A.L. Gaeta. Nature, 2008, 456(7218), 81. doi: 10.1038/nature07430.
  12. V.S. Vavilov, A.R. Chelyadinskij. Physics–Uspekhi, 1995, 165(3), 347. doi: 10.3367/UFNr.0165.199503g.0347.
  13. P. Migliorato, C.T. Elliott. Solid State Electron., 1978, 21(2), 443. doi: 10.1016/0038-1101(78)90276-9.
  14. Yu.A. Astrov, S.A. Lynch, V.B. Shuman, L.M. Portsel, A.A. Machova, A.N. Lodygin. Semiconductors [Fizika i tekhnika poluprovodnikov], 2013, 47(2), 211 (in Russian).
  15. B.K. Newman, M.J. Sher, E. Mazur, T. Buonassisi. Appl. Phys. Lett., 2011, 98(25), 251905. doi: 10.1063/1.3599450.
  16. C.B. Simmons, A.J. Akey, J.J. Krich, J.T. Sullivan, D. Recht, M.J. Aziz, T. Buonassisi. J. Appl. Phys., 2013, 114(24), 243514. doi: 10.1063/1.4854835.
  17. I. Umezu, J.M. Warrender, S. Charnvanichborikarn, A. Kohno, J.S. Williams, M. Tabbal, D.G. Papazoglou, Zhang Xi-Ch., M.J. Aziz. J. Appl. Phys., 2013, 113(21), 213501. doi: 10.1063/1.4804935.
  18. M.J. Sher, E. Mazur. Appl. Phys. Lett., 2014, 105(3), 032103. doi: 10.1063/1.4890618.
  19. L.P. Cao, Z.D. Chen, C.L. Zhang, J.H. Yao. Front. Phys., 2015, 10(4), 1. doi: 10.1007/s11467-015-0468-y.
  20. K.F. Wang, P. Liu, S. Qu, Y. Wang, Z. Wang. J. Mater. Sci., 2015, 50(9), 3391. doi: 10.1007/s10853-015-8895-2.
  21. M.V. Limaye, S.C. Chen, C.Y. Lee, L.Y. Chen, S.B. Singh, Y.C. Shao, Y.F. Wang, S.H. Hsieh, H.C. Hsueh, L.W. Chiou, C.H. Chen, L.Y. Jang, C.L. Cheng, W.F. Pong, Y.F. Hu. Sci. Rep., 2015, 5(1), 1. doi: 10.1038/srep11466.
  22. T. Gimpel, S. Winter, M. Bossmeyer, W. Schade. Sol. Energy Mater. Sol. Cells., 2018, 180, 168. doi: 10.1016/j.solmat.2018.03.001.
  23. B. Franta, D. Pastor, H.H. Gandhi, P.H. Rekemeyer, S. Gradečak, M.J. Aziz, E. Mazur. J. Appl. Phys., 2015, 118(22), 225303. doi: 10.1063/1.4937149.
  24. S. Paulus, P. McKearney, F. Völklein, S. Kontermann. AIP Advances, 2021, 11(7), 075014. doi: 10.1063/5.0044678.
  25. E. Janzén, R. Stedman, G. Grossmann, H.G. Grimmeiss. Phys. Rev. B, 1984, 29(4), 1907. doi: 10.1103/PhysRevB.29.1907.
  26. P. Wagner, C. Holm, R. Oeder, W. Zulehner. In ASSP, Vol. 24, FRG, Berlin, Heidelberg: Springer Verlag, 1984, pp. 191–228. doi: 10.1007/BFb0107451.
  27. R.E. Peale, K. Muro, A.J. Sievers. Materials Science Forum, 1991, 65–66, 151. doi: 10.4028/ href='www.scientific.net/MSF.65-66.151' target='_blank'>www.scientific.net/MSF.65-66.151.
  28. X. Jin, Q. Wu, S. Huang, G. Deng, J. Yao, H. Huang, P. Zhao, J. Xu. Opt. Mater., 2021, 113, 110874. doi: 10.1016/j.optmat.2021.110874.
  29. S. Kudryashov, K. Boldyrev, A. Nastulyavichus, D. Prikhod’ko, S. Tarelkin, D. Kirilenko, P. Brunkov, A. Shakhmin, R. Khamidullin, G. Krasin, M. Kovalev. Opt. Mater. Express, 2021, 11(11), 3792. doi: 10.1364/OME.438023.
  30. S.I. Kudryashov, L.V. Nguyen, D.A. Kirilenko, P.N. Brunkov, A.A. Rudenko, N.I. Busleev, A.L. Shakhmin, A.V. Semencha, R.A. Khmelnitsky, N.N. Melnik, I.N. Saraeva, A.A. Nastulyavichus, A.A. Ionin, E.R. Tolordava, Y.M. Romanova. ACS Appl. Nano Mater., 2018, 1(6), 2461. doi: 10.1021/acsanm.8b00392.
  31. N. Stsepuro, M. Kovalev, G. Krasin, I. Podlesnykh, Y. Gulina, S. Kudryashov. Photonics, 2022, 9, 815. doi: 10.3390/photonics9110815.
  32. D.V. Lavrukhin, A.E. Yachmenev, Y.G. Goncharov, K.I. Zaytsev, R.A. Khabibullin, A.M. Buryakov, E.D. Mishina, D.S. Ponomarev. IEEE Trans. Terahertz Sci. Technol., 2021, 11(4), 417. doi: 10.1109/TTHZ.2021.3079977.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Kudryashov S.I., Nastulyavichus A.A., Boldyrev K.N., Kovalev M.S., 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».