DC Magnetron Sputtering Plasma: VUV Radiation and Discharge Structure
- Авторлар: Pal A.F.1, Ryabinkin A.N.1, Serov A.O.1, Lopaev D.V.1, Mankelevich Y.A.1, Rakhimov A.T.1, Rakhimova T.V.1
-
Мекемелер:
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
- Шығарылым: Том 118, № 2 (2023): THEMED SECTION: FUNDAMENTAL PROBLEMS OF MULTILEVEL METALLIZATION SYSTEMS FOR ULTRA-LARGE INTEGRATED CIRCUITS
- Беттер: 105-112
- Бөлім: THEMED SECTION: FUNDAMENTAL SCIENTIFIC RESEARCH IN THE FIELD OF NATURAL SCIENCES
- URL: https://ogarev-online.ru/1605-8070/article/view/301388
- DOI: https://doi.org/10.22204/2410-4639-2023-118-02-105-112
- ID: 301388
Дәйексөз келтіру
Толық мәтін
Аннотация
The results of studies on DC magnetron discharge plasma carried out in the framework of RFBR project 18-29-27001 are presented. The structure of the magnetron discharge was investigated using the PIC MC method at pressures of 1–10 mTorr and a discharge current of 0.5 A. It was shown that the cathode region, where almost all of the discharge voltage drops, consists of a thin cathode sheath (0.1–0.2 mm) and a wide presheath (~2 cm), where most of the ionization occur. The ratio of voltages dropping in the sheath and the presheath linearly increases with pressure. The dependence of the discharge voltage on gas pressure has a minimum around 3 mTorr. At pressures of 2–12 mTorr, the intensity of vacuum ultraviolet (VUV) radiation was measured. On a substrate located 10 cm from the cathode, it is of the order of 1015 photons/(cm2s) at a deposition rate of 1.5 nm/s. The intensity is proportional to the discharge current and decreases with pressure. Estimates of the degree of damage to the porous low-k dielectric by VUV radiation during the deposition of barrier layers in a magnetron discharge were obtained.
Негізгі сөздер
Авторлар туралы
Alexander Pal
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: apal@mics.msu.su
Ресей, 1-2 Leninskie Gory, GSP-1, Moscow, 119991, Russia
Alexey Ryabinkin
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Email: alex.ryabinkin@gmail.com
Ресей, 1-2 Leninskie Gory, GSP-1, Moscow, 119991, Russia
Alexander Serov
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Email: aserov@mics.msu.su
Ресей, 1-2 Leninskie Gory, GSP-1, Moscow, 119991, Russia
Dmitriy Lopaev
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Email: d.lopaev@gmail.com
Ресей, 1-2 Leninskie Gory, GSP-1, Moscow, 119991, Russia
Yuriy Mankelevich
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Email: ymankelevich@mics.msu.ru
Ресей, 1-2 Leninskie Gory, GSP-1, Moscow, 119991, Russia
Alexander Rakhimov
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Email: arakhimov@mics.msu.ru
Professor
Ресей, 1-2 Leninskie Gory, GSP-1, Moscow, 119991, RussiaTatyana Rakhimova
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Email: trakhimova@mics.msu.ru
Ресей, 1-2 Leninskie Gory, GSP-1, Moscow, 119991, Russia
Әдебиет тізімі
- P. Kelly, R. Arnell Vacuum, 2000, 56(3), 159. doi: 10.1016/S0042-207X(99)00189-X.
- U. Helmersson, M. Lattemann, J. Bohlmark, A.P. Ehiasarian, J.T. Gudmundsson Thin Solid Films, 2006, 513(1–2), 1. doi: 10.1016/j.tsf.2006.03.033.
- A.F. Pal, A.N. Ryabinkin, A.O. Serov, D.V. Lopaev, Y.A. Mankelevich, A.T. Rakhimov, T.V. Rakhimova, M.R. Baklanov J. Phys. D. Appl. Phys., 2020, 53(29), 295202. doi: 10.1088/1361-6463/ab813f.
- J.W. Bradley, S. Thompson, Y.A. Gonzalvo Plasma Sources Sci. Technol., 2001, 10(3), 490. doi: 10.1088/0963-0252/10/3/314.
- O. Baranov, M. Romanov, M. Wolter, S. Kumar, X. Zhong, K. Ostrikov Phys. Plasmas, 2010, 17(5), 053509. doi: 10.1063/1.3431098.
- C. Huo, D. Lundin, M.A. Raadu, A. Anders, J.T. Gudmundsson, N. Brenning Plasma Sources Sci. Technol., 2013, 22(4), 045005. doi: 10.1088/0963-0252/22/4/045005.
- N. Brenning, J.T. Gudmundsson, D. Lundin, T. Minea, M.A. Raadu, U. Helmersson Plasma Sources Sci. Technol., 2016, 25(6), 065024. doi: 10.1088/0963-0252/25/6/065024.
- S. Kondo, K. Nanbu J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., 2001, 19(3), 830. doi: 10.1116/1.1359534.
- I. Kolev, A. Bogaerts, R. Gijbels Phys. Rev. E., 2005, 72(5), 056402. doi: 10.1103/PhysRevE.72.056402.
- I. Kolev, A. Bogaerts IEEE Trans. Plasma Sci., 2006, 34(3), 886. doi: 10.1109/TPS.2006.875843.
- E. Bultinck, A. Bogaerts J. Phys. D. Appl. Phys., 2008, 41(20), 202007. doi: 10.1088/0022-3727/41/20/202007.
- A. Revel, T. Minea, C. Costin Plasma Sources Sci. Technol., 2018, 27(10), 105009. doi: 10.1088/1361-6595/aadebe.
- S. Uchida, S. Takashima, M. Hori, M. Fukasawa, K. Ohshima, K. Nagahata, T. Tatsumi J. Appl. Phys., 2008, 103(7), 073303. doi: 10.1063/1.2891787.
- H. Shi, H. Huang, J. Bao, J. Liu, P.S. Ho, Y. Zhou, J.T. Pender, M.D. Armacost, D. Kyser J. Vac. Sci. Technol. B, 2012, 30(1), 011206. doi: 10.1116/1.3671008.
- T.V. Rakhimova, A.T. Rakhimov, Y.A. Mankelevich, D.V. Lopaev, A.S. Kovalev, A.N. Vasileva, O.V. Proshina, O.V. Braginsky, S.M. Zyryanov, K. Kurchikov, N.N. Novikova, M.R. Baklanov Appl. Phys. Lett., 2013, 102(11), 111902. doi: 10.1063/1.4795792.
- T.V. Rakhimova, A.T. Rakhimov, Y.A. Mankelevich, D.V. Lopaev, A.S. Kovalev, A.N. Vasil’eva, S.M. Zyryanov, K. Kurchikov, O.V. Proshina, D.G. Voloshin, N.N. Novikova, M.B. Krishtab, M.R. Baklanov J. Phys. D. Appl. Phys., 2014, 47(2), 025102. doi: 10.1088/0022-3727/47/2/025102.
- A.N. Ryabinkin, A.O. Serov, A.F. Pal, Y.A. Mankelevich, A.T. Rakhimov, T.V. Rakhimova Plasma Sources Sci. Technol. IOP Publishing, 2021, 30(5), 055009. doi: 10.1088/1361-6595/abf31e.
- Y.A. Mankelevich, A.F. Pal, A.N. Ryabinkin, A.O. Serov J. Phys. Conf. Ser., 2018, 946(1), 012150. doi: 10.1088/1742-6596/946/1/012150.
- NIST Atomic Spectra Database (https://physics.nist.gov/asd). doi: 10.18434/T4W30F.
- S. Espinho, E. Felizardo, J. Henriques, E. Tatarova J. Appl. Phys., 2017, 121(15), 153303. doi: 10.1063/1.4981535.
Қосымша файлдар
